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a b s t r a c t

With the advance in composite mechanics and micromechanics, there are increasing
demands for analytical solutions of inclusion problems in a bounded domain. To echo this
need, this study is focused on establishing explicit expressions of elastic fields for a 2D elas-
tic domain containing a circular inclusion at center. Unlike the configuration in the classical
Eshelby formulation, the elastic domain in this study is bounded and has shapes other than
a circle. To circumvent the mathematical difficulty in solving Green’s function in a finite
domain, an approach powered by complex potential method, which has been successfully
employed to formulate the elastic fields for inclusion problems where matrix is unbounded
or bounded by a circle, is extended to finite domains displaying complicated shapes, par-
ticularly, a Pascal’s limaçon and a curved square (an approximation of perfect square) in
this study. In order to take advantage of the mathematical simplicity inherent in expressing
a circular geometry, conformal mapping is used to transform the complex geometry of the
finite domain of interest to a unit circle. The governing complex potentials, which capture
the discontinuity on the inclusion–matrix interface due to the uniform eigenstrain within
the inclusion, are formulated with the aid of Cauchy integral and then explicitly identified
by satisfying the prescribed boundary conditions. In this study, the displacement fields for
finite domains bounded by a Pascal’s limaçon and a curved square are obtained based on
Dirichlet (displacement) boundary conditions imposed by the far field strain. In addition
to asymptotical behaviors, firm agreement is also achieved when the analytical solutions
based on complex potentials are compared with the FEM results. Furthermore, inverse of
the conformal mapping is discussed here in order to get the explicit expression for elastic
fields.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their significant importance in composite
mechanics and micromechanics, inclusion problems in
finite domains are attracting increasing attentions in a rich
variety of engineering applications, e.g., particle-reinforced
composites, cementitious materials, quantum dots, to
name a few. The key of the problem is to determine the

elastic fields in a bounded domain, which are disturbed
by an inclusion embedded at center. Its fundamental dif-
ference from the classical Eshelby’s formulation is that
the domain is now bounded and has a specific shape,
which presents a significant effect on the disturbed elastic
fields.

Eshelby’s pioneer work (Eshelby, 1957, 1959) led to the
analytical solutions of the elastic fields for an infinite
domain containing an ellipsoidal inclusion. The strains in
the inclusion and matrix can be elegantly characterized
by the interior and exterior tensors respectively, which
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are later named after him. Serving as the cornerstone, the
classical Eshelby’s tensors are utilized for important
homogenization schemes such as Mori–Tanaka homogeni-
zation (Mori and Tanaka, 1973; Weng, 1990) and Self-
consistent homogenization (Hill, 1965; Huang et al.,
1994), both of which are widely used for approximating
the average properties and responses of composite materi-
als. Following Eshelby’s breakthrough, significant progress
has been made to extend the scope of the inclusion prob-
lems to take into account the additional interfacial phase
(Luo and Weng, 1987, 1989), inclusion shape (Rodin,
1996; Nozaki and Taya, 1997, 2001), orthotropic matrix
(Ru, 2003), and matrix-inclusion bond slip (Mura et al.,
1985).

However, such progress made in the regime of infinite
domain cannot realistically represent a wide spectrum of
problems where the matrix is bounded and the volume
fraction of the inclusion cannot be ignored. The initial
attempts to bridge this gap (Kinoshita and Mura, 1984;
Kirchner and Ni, 1993) were not successful because of the
mathematic difficulty imposed by seeking for Green’s func-
tion in a finite domain. Later, using stress function, Luo and
Weng (1987, 1989) formulated both the 2D and 3D elastic
fields for a 3-phase inhomogeneous inclusion problem with
the third phase (i.e., the exterior matrix) being unbounded.
This only implicitly provides analytical solutions for a finite
domain of 2 phases forming a concentric circular configura-
tion in 2 limiting cases: (1) free boundary if the third phase
is infinitely soft and (2) fixed boundary if the third phase is
perfectly rigid. Other than that, no general solutions were
available for finite domains until recent progress made by
Li et al. (2005), Wang et al. (2005) and Li et al. (2007a,b),
who took advantage of the geometric characteristics of a
concentric circular configuration to postulate that the cir-
cumference basis of the Eshelby’s tensor of an isotropic
finite domain is similar to that of the Eshelby’s tensor in
an isotropic infinite domain. If this holds, which does for a
concentric circular configuration, it means the obstacle of
solving Green’s function in a finite domain can be bypassed.
Using Somigliana’s identity and Green’s function in infinite
domain, general solutions of the exterior and interior
tensors were presented for finite domains showing a
concentric circular configuration. Subsequently, Gao and
Ma (2010) and Ma and Gao (2011) gave the similar
solutions based on strain gradient elasticity theory.

However, all these solutions are only effective for repre-
sentative volume elements (RVEs) of a concentric circular
configuration. For matrices of shapes other than a circle,
the solutions are not applicable because the validity of
the key postulate disappears. To overcome this problem,
a versatile approach, whose generality does not rely on
the geometric properties of the matrix shape, is needed.
Due to its rich theoretical foundation in 2D algebraic prob-
lems, effort has been made to use complex potential
method to tackle the boundary value problem induced by
the bounded matrix.

Initially developed by Kolosov (1909), complex poten-
tial method has been widely used to formulate analytical
expressions for problems in plane theory of elasticity. Cre-
atively, Sherman (1940) and Muskhelishvili (1953) pro-
posed that one could construct the complex potential

functions based on the eigenstrain-induced gap on the
inclusion-matrix interface so as to convert the inclusion
problem in an infinite domain to the Riemann–Hilbert
problem, which can be solved based on the evaluation of
certain Cauchy integrals. They further conjectured that
via intentional selection of two additional holomorphic
functions in the formulation, this approach could be
extended to finite domains. However, the attempts
(Jaswon and Bhargava, 1961; List and Silberstein, 1966;
Sendeckyj, 1970) to practice this conjecture in finite
domains did not result in any analytical solutions until
recently. Proposing a superposition framework, which is
essentially equivalent to customizing the additional holo-
morphic functions conjectured by Sherman (1940) and
Muskhelishvili (1953), Zou et al. (2012) obtained for the
first time the general analytical expressions for 2D inclu-
sion problems in a finite domain. However, in their work,
mathematical formulation is focused on circular RVEs
and the approaches to tackle the shape effect of matrix
are not documented.

In many engineering applications, the shape of the RVE
cannot be circular because the composite solids cannot be
discretized by circular RVEs. Instead, squared, hexagonal
and other complicatedly shaped RVEs have to be used.
Therefore, the mathematical formulations presented by
Sherman (1940), Muskhelishvili (1953) and Zou et al.
(2012) have to be extended to take into account the shape
effect of the RVE. A great advantage of complex potential
method is that the shape effect on the complex potentials
can be handled by conformal mapping (Sendeckyj, 1970;
Jasiuk et al., 1992). Thus, solutions on a simple geometry
like a unit circle, which brings simplicity in mathematical
formulation, can be utilized for complex shapes. As docu-
mented by Sherman (1940) and Muskhelishvili (1953),
the complex potentials for inclusion problems can be
expressed by power series, which make it convenient to
employ the injective conformal mapping in the form of
polynomials to take the shape effect into account.

The objective of this study is to extend the solutions
based on complex potential approach, especially those
given by Zou et al. (2012) on a circular RVE, to inclusion
problems in finite domains of shapes other than a circle.
The focus is placed on providing a systematic approach
built upon complex potential formulation coupled with
conformal mapping transformation of different shapes.
The paper is presented as follows. Following the descrip-
tion of the bounded RVEs of complex shapes and corre-
sponding boundary conditions, the key aspects of the
conformal mapping to transform the complicatedly
shaped matrices to a unit circle are introduced. Then,
the general formulations for complex potentials govern-
ing the finite domains and their expressions in the
mapped domain are delineated. Subsequently, the explicit
solutions for the elastic fields are obtained for bounded
domains showing shapes of a Pascal’s limaçon which
can easily recover the concentric circular configuration
and of a curved square which gives realistic approxima-
tion of a perfect square. In addition to the comparison
with classical Eshelby’s solution and theoretical solutions
for concentric circular RVEs, the solutions are compared
with FEM simulations as well. At the end, discussions
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