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a b s t r a c t

Multilayer coatings are often seen in surface engineering for surface modifications. Optimal
design of the multilayered materials requires the understanding of their mechanical behav-
iors based on deformation and stress analyses. The frequency response functions (FRFs) of
the displacement and stress fields in multilayered materials under unit normal and shear
loadings are the analytical cores for solving the contact of such materials. The authors have
successfully derived these functions by utilizing the Papkovich–Neuber potentials and
appropriate boundary conditions. Two matrix equations containing unknown coefficients
in the FRFs are established by following the structure rules, and then the closed-form FRFs
written in a recurrence format are established. A fast numerical semi-analytical model
based on the derived FRFs is further developed for investigating the elastic contact of mul-
tilayered materials with any desired material design.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayer coatings as surface modifications have been
introduced to mechanical, electrical, and biomedical com-
ponents for various needs. Optimal design of multilayer
coatings requires the understanding of their mechanical
behaviors based on deformation and stress analyses. The
contact analyses of the layered materials generally require
the use of numerical methods, such as the semi-analytical
method (SAM) (Burmister, 1945a,b,c; Cai and Bhushan,
2005; Chen, 1971, Chen and Engel, 1972; Kuo and Keer,
1992; Leroy et al., 1989; Liu and Wang, 2002; Nogi and
Kato, 1997; O’Süllivian and King, 1988; Plumet and
Dubourg, 1998), the boundary element method (BEM)

(Luo et al., 2000), the finite element method (FEM) (Chen
and Bull, 2009; Djabella and Arnell, 1994; Gorishnyy
et al., 2003; Komvopoulos, 1988; Komvopoulos and Choi,
1992; Kot et al., 2013), and the equivalent inclusion
method (EIM) (Bagault et al., 2013; Chen et al., 2010).
The contact of layered materials has been extensively stud-
ied over one half of a century; however, most of the
researches were focused on the materials with a single-
layer coating. Theoretically, the methodologies utilized in
single coating system should apply to the studies of multi-
layered materials; however, the introduction of multi-
coatings significantly complicates the solution process
and aggravates the computational expense.

Several finite element models have been developed to
investigate the stresses and deformations of the multilay-
ered materials (Kot, 2012; Kot et al., 2013; Lakkaraju
et al., 2006). As one of the advantages of FEM, various
material constitutive laws, elasto-plasticity, for an example
(Kot, 2012), can be involved. However, expensive computa-
tional burden is one of its trade-offs. The boundary
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element method was introduced to analyze the interfacial
stress of a multi-coating system, where a two-dimensional
plane strain problem was solved with the aid of integrals
(Luo et al., 2000). The equivalent inclusion method can
only consider the influence of coatings in the computation
domain instead of infinitely spreading layers (Chen et al.,
2010).

With the semi-analytical methods, the analytical rela-
tionships between responses (displacements and stresses)
and excitations (surface normal and shear tractions) have
to be solved through use of the integral transform theory,
which maps a complicated spatial problem into an equiva-
lent, usually much simpler problem in the transformed fre-
quency domain. Such problems involve the use of the
Papkovich–Neuber potentials or the Galerkin vector poten-
tials, where the potentials functions in these equations can
be written in integral transforms. Double Fourier series or
integrals are usually utilized for rectangular domains and
Hankel transforms for circular domains (Keer, 2008). The
general theories of the stresses and displacements of lay-
ered soil systems were structured by Burmister
(1945a,b,c) with the aid of the Bessel type of stress
functions for analyzing the contact under prescribed axi-
symmetric surface normal loading. Both fully bonded
interface and frictionless interfaces were studied. Chen
(1971) and Chen and Engel (1972) extended the applica-
tions to both axisymmetric and non-axisymmetric normal

surface loading. The displacement and stresses were
expressed in terms of two harmonic functions in the form
of Fourier-type integrals. Boundary and continuity condi-
tions were utilized to solve for the unknown coefficients.
The final elastic solutions in the spatial domain were
obtained by applying the inverse Fourier transform, requir-
ing numerical quadrature for the integrand evaluation.
O’Süllivian and King (1988) studied the contact of bi-lay-
ered materials under normal and shear loads. With the
aid of the Papkovich–Neuber potentials in the frequency
domain and appropriate boundary conditions, a linear sys-
tem of equations were set up for solving the unknown
coefficients in the displacement and stresses expressions.
The closed-form equations were thus explicitly derived,
and the solutions transferred back to the spatial domain
via numerical inverse transformation. Kuo and Keer
(1992) studied the contact of multilayered transversely
isotropic materials under normal and tangential loading
via the Hankel transform. The multilayer coatings were
handled with a greatly reduced effort by introducing the
propagator matrix and continuity conditions at each
interface.

FFT techniques were applied to contact mechanics by Ju
and Farris (1996) to achieve significant increase in compu-
tation speed by using the discrete Fourier transform
instead of the above-mentioned continuous integral trans-
forms. Nogi and Kato (1997) applied the FFT technique and

Nomenclature

a0 contact radius in the Hertz solution of the
substrate material

Ac the area in contact
AðjÞ; AðjÞ; BðjÞ; BðjÞ; CðjÞ; �CðjÞ unknown coefficients in the

Papkovich–Neuber potentials in the fre-
quency domain

BðjÞ;m; BðjÞ;m derivative of the B components with respect
to m

Ej Young’s modulus of layer j [MPa]
Gj shear modulus of layer j [MPa]
G(j,j+1) ratio of the shear modulus of jth layer to that

of (j + 1)th layer
~~Gu3 ðm;n;0Þ the FRF of surface displacement u3 at node

(m,n,0)
hj thickness of layer j [m]
H, Hi surface gap and initial surface gap [m]
J2 the second invariant of the stress deviator

tensor [MPa2]ffiffiffiffi
J2

p
=P0 normalized von Mises stress

L total number of coatings
m, n Fourier-transformed frequency variables

with respect to x and y
p(x,y), q(x,y) normal and shear loadings in the spatial

domain [MPa]
~~pðm;nÞ, ~~qðm;nÞ normal and shear loadings in the fre-

quency domain
P0 peak contact pressure in the Hertz solution

of the substrate material [MPa]
Sð0Þ1 ; Sð0Þ2 the S components in the surface

SðjÞ1 ; SðjÞ2 ; SðjÞ3 ; SðjÞ4 the S components at the jth interface

SðjÞa ; SðjÞb ; tðjÞ0 ; kðjÞr ; DðjÞr intermediate variables (defined in
Appendix C) at the jth interface

uðjÞi displacement ui in layer j [m]
x, y, zj Cartesian coordinates in the spatial domain
a distance of a node (m,n) to the origin in the

frequency domain
dik Kronecher delta
l friction coefficient
mj Poisson’s ratio of the material in layer j
rðjÞik stress component rik in layer j [MPa]

rð0Þik stress component rik in the surface [MPa]
u and w1, w2, w3 Papkovich–Neuber potentials in the

spatial domain
~~uðjÞ; ~~wðjÞ1 ;

~~wðjÞ3 Papkovich–Neuber potentials in the fre-
quency domain in layer j

x normal rigid body approach [m]

Special marks
� double Fourier transforms operations
� direct multiplication in the frequency do-

main
FTxy double Fourier transform about x and y
IFFT inverse fast Fourier transform

Superscripts or subscripts
j = 1, . . .,L layer or interface number
m derivative with respect to m
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