Contents lists available at ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier.com/locate/mechmat

Analytical frequency response functions for contact of multilayered materials

Chengjiao Yu^a, Zhanjiang Wang^{b,*}, Q. Jane Wang^{a,b,*}

^a Northwestern University, Evanston, IL 60208, United States

^b State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China

ARTICLE INFO

Article history: Received 29 January 2014 Received in revised form 7 June 2014 Available online 21 June 2014

Keywords: Analytical frequency response functions Multilayered materials Coatings Contact modeling

ABSTRACT

Multilayer coatings are often seen in surface engineering for surface modifications. Optimal design of the multilayered materials requires the understanding of their mechanical behaviors based on deformation and stress analyses. The frequency response functions (FRFs) of the displacement and stress fields in multilayered materials under unit normal and shear loadings are the analytical cores for solving the contact of such materials. The authors have successfully derived these functions by utilizing the Papkovich–Neuber potentials and appropriate boundary conditions. Two matrix equations containing unknown coefficients in the FRFs are established by following the structure rules, and then the closed-form FRFs written in a recurrence format are established. A fast numerical semi-analytical model based on the derived FRFs is further developed for investigating the elastic contact of multilayered materials with any desired material design.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayer coatings as surface modifications have been introduced to mechanical, electrical, and biomedical components for various needs. Optimal design of multilayer coatings requires the understanding of their mechanical behaviors based on deformation and stress analyses. The contact analyses of the layered materials generally require the use of numerical methods, such as the semi-analytical method (SAM) (Burmister, 1945a,b,c; Cai and Bhushan, 2005; Chen, 1971, Chen and Engel, 1972; Kuo and Keer, 1992; Leroy et al., 1989; Liu and Wang, 2002; Nogi and Kato, 1997; O'Süllivian and King, 1988; Plumet and Dubourg, 1998), the boundary element method (BEM)

http://dx.doi.org/10.1016/j.mechmat.2014.06.006

0167-6636/© 2014 Elsevier Ltd. All rights reserved.

(Luo et al., 2000), the finite element method (FEM) (Chen and Bull, 2009; Djabella and Arnell, 1994; Gorishnyy et al., 2003; Komvopoulos, 1988; Komvopoulos and Choi, 1992; Kot et al., 2013), and the equivalent inclusion method (EIM) (Bagault et al., 2013; Chen et al., 2010). The contact of layered materials has been extensively studied over one half of a century; however, most of the researches were focused on the materials with a singlelayer coating. Theoretically, the methodologies utilized in single coating system should apply to the studies of multilayered materials; however, the introduction of multicoatings significantly complicates the solution process and aggravates the computational expense.

Several finite element models have been developed to investigate the stresses and deformations of the multilayered materials (Kot, 2012; Kot et al., 2013; Lakkaraju et al., 2006). As one of the advantages of FEM, various material constitutive laws, elasto-plasticity, for an example (Kot, 2012), can be involved. However, expensive computational burden is one of its trade-offs. The boundary

^{*} Corresponding authors. Address: Northwestern University, Evanston, IL 60208, United States. Tel.: +1 (847) 467 7510 (Q.J. Wang), tel.: +86 18502376952 (Z. Wang).

E-mail addresses: wangzhanjiang001@gmail.com (Z. Wang), qwang@ northwestern.edu (Q.J. Wang).

Nomenclature

a_0	contact radius in the Hertz solution of the
	substrate material
A_c	the area in contact
$A^{(j)}, \overline{A}^{(j)}, B^{(j)}$	$\overline{B}^{(j)}, \overline{B}^{(j)}, C^{(j)}, \overline{C}^{(j)}$ unknown coefficients in the
	Papkovich-Neuber potentials in the fre-
	quency domain
$B_{m}^{(j)}, \overline{B}_{m}^{(j)}$	derivative of the <i>B</i> components with respect
,,.,	to m
Ei	Young's modulus of layer <i>i</i> [MPa]
G _i	shear modulus of laver <i>i</i> [MPa]
$G^{(j,j+1)}$	ratio of the shear modulus of <i>i</i> th layer to that
	of $(i + 1)$ th laver
$\tilde{\tilde{G}}^{u_3}(m,n,0)$	the FRF of surface displacement u_3 at node
	(<i>m</i> , <i>n</i> ,0)
h;	thickness of laver <i>i</i> [m]
H, H_i	surface gap and initial surface gap [m]
b	the second invariant of the stress deviator
52	tensor [MPa ²]
$\sqrt{I_2}/P_0$	normalized von Mises stress
L	total number of coatings
<i>m</i> , <i>n</i>	Fourier-transformed frequency variables
	with respect to <i>x</i> and <i>y</i>
p(x,y), $q(x,y)$ normal and shear loadings in the spatial	
	domain [MPa]
$\tilde{\tilde{p}}(m,n)$, $\tilde{\tilde{q}}(m,n)$	(n, n) normal and shear loadings in the fre-
	quency domain
Po	peak contact pressure in the Hertz solution
	of the substrate material [MPa]
$S_1^{(0)}, S_2^{(0)}$	the S components in the surface
$\mathbf{S}^{(j)}$ $\mathbf{S}^{(j)}$ $\mathbf{S}^{(j)}$	$S^{(j)}$ the S components at the <i>i</i> th interface
s_1, s_2, s_3	, 54 the 5 components at the jui interface

element method was introduced to analyze the interfacial stress of a multi-coating system, where a two-dimensional plane strain problem was solved with the aid of integrals (Luo et al., 2000). The equivalent inclusion method can only consider the influence of coatings in the computation domain instead of infinitely spreading layers (Chen et al., 2010). With the semi-analytical methods, the analytical rela-

tionships between responses (displacements and stresses) and excitations (surface normal and shear tractions) have to be solved through use of the integral transform theory, which maps a complicated spatial problem into an equivalent, usually much simpler problem in the transformed frequency domain. Such problems involve the use of the Papkovich-Neuber potentials or the Galerkin vector potentials, where the potentials functions in these equations can be written in integral transforms. Double Fourier series or integrals are usually utilized for rectangular domains and Hankel transforms for circular domains (Keer, 2008). The general theories of the stresses and displacements of layered soil systems were structured by Burmister (1945a,b,c) with the aid of the Bessel type of stress functions for analyzing the contact under prescribed axisymmetric surface normal loading. Both fully bonded interface and frictionless interfaces were studied. Chen (1971) and Chen and Engel (1972) extended the applications to both axisymmetric and non-axisymmetric normal

$S_a^{(j)}, S_b^{(j)}, t_0^{(j)}$	$k_r^{(j)}, k_r^{(j)}, D_r^{(j)}$ intermediate variables (defined in
	Appendix C) at the <i>j</i> th interface
$u_i^{(j)}$	displacement u_i in layer j [m]
x, y, z _j	Cartesian coordinates in the spatial domain
α	distance of a node (m,n) to the origin in the
	frequency domain
δ_{ik}	Kronecher delta
μ	friction coefficient
$v_{j_{(r)}}$	Poisson's ratio of the material in layer <i>j</i>
$\sigma^{(j)}_{ik}$	stress component σ_{ik} in layer j [MPa]
$\sigma_{ik}^{(0)}$	stress component σ_{ik} in the surface [MPa]
φ and ψ_1 ,	ψ_2 , ψ_3 Papkovich–Neuber potentials in the
~ ~ ~ ~	spatial domain
$ ilde{ ilde{arphi}}^{(j)}, ilde{\psi}^{(j)}_1, ilde{\psi}^{(j)}$	$\dot{b}_{3}^{(j)}$ Papkovich–Neuber potentials in the fre-
-	quency domain in layer <i>j</i>
ω	normal rigid body approach [m]
Special mar	-ks
≈	double Fourier transforms operations
0	direct multiplication in the frequency do-
	main
FT_{xy}	double Fourier transform about x and y
IFFT	inverse fast Fourier transform
Superscript	s or subscripts
j = 1,, L	layer or interface number
m	derivative with respect to <i>m</i>
	•

surface loading. The displacement and stresses were expressed in terms of two harmonic functions in the form of Fourier-type integrals. Boundary and continuity conditions were utilized to solve for the unknown coefficients. The final elastic solutions in the spatial domain were obtained by applying the inverse Fourier transform, requiring numerical quadrature for the integrand evaluation. O'Süllivian and King (1988) studied the contact of bi-layered materials under normal and shear loads. With the aid of the Papkovich-Neuber potentials in the frequency domain and appropriate boundary conditions, a linear system of equations were set up for solving the unknown coefficients in the displacement and stresses expressions. The closed-form equations were thus explicitly derived, and the solutions transferred back to the spatial domain via numerical inverse transformation. Kuo and Keer (1992) studied the contact of multilayered transversely isotropic materials under normal and tangential loading via the Hankel transform. The multilayer coatings were handled with a greatly reduced effort by introducing the propagator matrix and continuity conditions at each interface

FFT techniques were applied to contact mechanics by Ju and Farris (1996) to achieve significant increase in computation speed by using the discrete Fourier transform instead of the above-mentioned continuous integral transforms. Nogi and Kato (1997) applied the FFT technique and Download English Version:

https://daneshyari.com/en/article/802786

Download Persian Version:

https://daneshyari.com/article/802786

Daneshyari.com