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a b s t r a c t

This paper is concerned with contact problem for a half-space of two-dimensional
hexagonal quasi-crystal punched by three common indenters (cylindrical flat-ended,
conical and spherical punches). Based on the Green’s functions for the half-space subjected
to an external phonon source exerted on the surface, the superposition principle is applied
to constructing the boundary integral equation. Relations between the indentation
force and the penetration depth, and the indentation stiffness constants are explicitly
obtained for these three indenters. Complete and exact fields in the half-space are given
in terms of elementary functions. The present theoretical solutions can not only serve as
benchmark for computational contact mechanics, but also apply to guiding future indentation
experiments.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the discovery of quasi-crystals (QCs) by
Shechtman et al. (1984), its mechanical behaviors have
gradually been an important branch of condensed matter
physics (Fan, 2011). Owing to the special arrangement of
atoms, QC bodies have many desirable properties, for
instance, lower friction coefficients, lower adhesion, higher
wear resistance and lower porosity in contrast with the
media of traditional crystals (Dubois et al., 1991; Kenzari
et al., 2012). This enables QCs to enjoy a promising pros-
pect in numerous engineering fields (Belin-Ferre et al.,
2000; Brunet et al., 2000).

In the past three decades, a great deal of research efforts
have been made to study the crack and dislocation prob-
lems (De and Pelcovits, 1987; Ding et al., 1995; Fan and
Mai, 2004; Fan, 2011); for example, Wang (2004), taking
advantage of complex variable method, characterized the

interaction between a half-infinite plane crack and a line
dislocation in decagonal QCs in terms of local stress inten-
sity factors, energy release rate (ERR) at the crack tip and
the Peach-Koehler force acting on the line dislocation. By
virtue of Stroh formalism, steady propagation of a straight
dislocation in an unbounded elastic quasi-crystal with five-
fold symmetry was analyzed by Radi and Mariano (2011).
In the framework of two-dimensional (2D) elasticity of
QCs, Gao et al. (2011) used complex potentials to seek
the explicit expressions for stress intensity factors, crack
open displacements and strain energy release rate, for an
elliptical hole or crack. Fan et al. (2012) presented general
fracture theory of QCs concerning with linear, nonlinear
and dynamic fracture problems. Recently, Li (2013)
extended the potential theory method developed by
Fabrikant (1989, 1991) to thermo-elasticity of one-
dimensional (1D) hexagonal QCs and derived the non-
axisymmetric fundamental solutions for an infinite space
weakened by a penny-shaped or half-infinite plane crack.
Comprehensive literature review on the developments rel-
ative to the mechanics of QCs is far beyond the scope of the
present paper. The reader interested in dislocation,
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inclusion and crack problems, can refer to the monograph
(Fan, 2011) and the review paper (Fan and Mai, 2004).

As pointed out by Fan (2011) and Radi and Mariano
(2011), the data for the material constants involved in
constitutive relations, especially those characterizing the
phonon–phason interaction activity, are very rare. To fill
the gap, various methods including Monte Carlo simulation
(Strandburg et al., 1989; Tang, 1990), relaxation simulation
(Zhu and Henley, 1999; Koschella et al., 2002), transfer-
matrix method (Newman and Henley, 1995), diffuse
scattering (Dubois et al., 1991; de Boissieu et al., 1995;
Létoublon et al., 2001) and X-ray diffraction measurements
(Edagawa, 2005) have been reported.

Apart from the foregoing approaches, indentation
technique and atomic force microscopy (AFM) are widely
employed to characterize the mechanical behavior of QCs
(Azhazha et al., 2005; Mukhopadhyay et al., 2006). This
technique evidently rely on the contact solutions, in the
framework of elasticity of QCs owing to the phonon–
phason coupling behavior. Furthermore, during the inden-
tation test, the resolution of microscopy setting depends
on deep insights in the pressure-response relation
(Karapetian and Kalinin, 2011).

According to the literature survey, there are quite a few
records concerning the contact analyses for QC body. Peng
and Fan (2001), making use of Fourier series expansion and
Hankel transform, derived a general solution in an integral
form for a half-space of one-dimensional hexagonal QC,
indented by a cylindrical punch. Following a similar method,
Zhou et al. (2002) investigated an axisymmetric contact prob-
lem for cubic QCs, and presented the distribution of the gener-
alized stresses underneath the rigid indenter. In these two
articles (Peng and Fan, 2001; Zhou et al., 2002), however, the
indentation force versus indentation depth, which is of high
importance in experiment, is not given. Furthermore, the
distributions of phonon and phason fields in the half-space
are not discussed either. Recently, Wu et al. (2013) examined
the axisymmetric contact problem for an half-infinite space of
1D hexagonal QC punched by three indenters (flat-ended cyl-
inder, cone and sphere) and derive the intrinsic links betweens
the indentation force and penetration depth.

Atoms of two-dimensional (2D) QCs are arranged peri-
odically in one direction and aperiodically in the plane nor-
mal to previous direction, which is quite different from
those of 1D QCs. As a result, the constitutive laws for 2D
QCs differ from those for 1D ones. In fact, the generalized
Hook’s laws for the former are more complicated than
those for the latter (Hu et al., 2000; Fan, 2011): the strain
originating from two phason displacements are introduced
for 2D QCs, and hence more material constants are
involved in the generalized stress–strain relations.

This paper aims to present general theory on indenta-
tion over a half-space of 2D hexagonal QCs indented by
three types of typical punches. Corresponding half-space
Green’s functions to an external concentrated force in the
phonon field are derived by analogy with the methods pro-
posed by Ding et al. (1997) for piezoelectric media. Bound-
ary integral equation governing the contact problem is
derived by superposing the Green’s function, and is solved
by virtue of potential theory method initiated by Fabrikant
(1989, 1991). Explicit expressions for indentation force and

penetration depth are derived for these three indenters.
The indentation stiffness constant, an intrinsic parameter
in experimental test, is uniformly given by a single
expression for the indenters. The coupling phonon–phason
fields in the half-space are obtained in terms of elementary
functions. Numerical calculations are carried out to discuss
various issues of special interests.

2. Basic equations and fundamental solutions

2.1. Basic equations

Consider a two-dimensional (2D) hexagonal Quasi-
crystal body, whose atoms are arranged quasi-periodically
in the r � h plane, and periodically in the z-direction, by
referring to the cylindrical coordinate system r; h; zð Þ. The
constitutive relations of the QCs read (Hu et al., 2000;
Gao and Zhao, 2009)

rrr ¼ c11err þ c12ehh þ c13ezz þ R1xrr þ R2xhh

rhh ¼ c12err þ c11ehh þ c13ezz þ R2xrr þ R1xhh

rzz ¼ c13 err þ ehhð Þ þ c33ezz þ R3 xrr þxhhð Þ
rhz ¼ rzh ¼ 2c44ehz þ R4xhz

rrz ¼ rzr ¼ 2c44erz þ R4xrz

rrh ¼ rhr ¼ 2c66erh þ R6 xrh þxhrð Þ

ð1aÞ

Hrr ¼ R1err þ R2ehh þ R3ezz þ K1xrr þ K2xhh

Hrh ¼ 2R6erh þ K3xrh þ K6xhr

Hrz ¼ 2R4ezr þ K4xrz

ð1bÞ

Hhr ¼ 2R6erh þ K6xrh þ K3xhr

Hhh ¼ R2err þ R1ehh þ R3ezz þ K2xrr þ K1xhh

Hhz ¼ 2R4ehz þ K4xhz

ð1cÞ

where

2c66 ¼ c11 � c12; K6 ¼ K1 � K2 � K3; 2R6 ¼ R1 � R2

ð2Þ

rij and Hij are the stress components in phonon and phason
fields, eij and xij denote the phonon and phason strain com-
ponents; cij;Ki and Ri represent the phonon, phason and
phonon–phason coupling elastic constants, respectively.

The strain components are expressed in terms of the
phonon displacements (ui) and phason ones (wi) as
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In the absence of body forces, the generalized equilibrium
equations for 2D hexagonal quasi-crystals are of the
following form
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