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a b s t r a c t

This paper is devoted to the study of geometries of inhomogeneities with minimum strain
or stress concentration. The solutions are achieved by the indirect method of first deriving
lower bounds and then constructing the geometries to attain the lower bounds. In
particular, we show that a new class of geometries, namely, E-inclusions and periodic
E-inclusions, are the optimal geometries with minimum field concentrations. We also
obtain the explicit relation between the shape matrix of E-inclusion and remote applied
strain which will be convenient for engineering applications of these new geometries.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The failure criteria of materials are often formulated in
terms of ‘‘yield stress’’ or ‘‘ultimate stress’’, meaning that
the maximum stress sustained by the material cannot
exceed these critical values. As is well-known, inhomogene-
ities such as holes or inclusions inevitably increase the local
stress and strain in an elastic body (Wheeler and Kunin,
1982; Mura, 1987; Cherkaev et al., 1998; Nemat-Nasser
and Hori, 1999; Vigdergauz, 2006). On the other hand, it is
necessary to introduce inhomogeneities such as holes for
adaptivity or desired geometry. For instance, it is common
to use rivets or bolts to assemble small structural members
into large, sometimes gigantic, structures such as airplanes,
buildings and bridges. Also, second-phase precipitates often
emerge for the coexistence of different phases of the same
materials whose microstructure may be engineered to
improve mechanical properties of the material (Schneider

et al., 1997; Jou et al., 1997). In microelectronics, a similar
dilemma occurs. To miniaturize microelectronic devices, it
is desirable to use smaller conducting interconnects for real-
izing desired functionality. However, nuclei migrates under
the bombardment of electric currents or flow of electrons
and under certain critical currents or the driving force on
the electrons (i.e., electric field), the migrations of nuclei
become so severe that the material fails permanently
(Christou, 1994).

From the above examples, it is clear that for practical
engineering one needs to balance between lowering the
magnitude of local fields such as stress, strain or electric
field and maintaining the functionality or fulfilling the geo-
metric constraints among others. Therefore, a precise anal-
ysis of field concentration is critical for the safety and
reliability of the overall structure. In order to maintain
the fields within safe limits, we are interested in the opti-
mization problems of minimizing field concentration with
respect to the geometries of inhomogeneities. A dimen-
sionless quantity, namely, the field concentration factor,
may be introduced to evaluate the severity of local field
concentration in the body. Then a generic design problem
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is to find the optimal geometries of inhomogeneities such
that the field concentration factor is minimized.

From a mathematical viewpoint, the dependence of
field concentration on the geometries of inhomogeneities
is rather complicated; one has to a priori solve the
governing partial differential equation to evaluate the
concentration factor for given geometries. In other words,
the concentration factor depends nonlocally on the geome-
tries of inhomogeneities. Therefore, the prevailing direct
method of calculus of variation is not applicable. A conven-
tional approach to such optimal design problems is based
on an iterative process: trial geometries of inhomogenei-
ties are chosen, the field concentration is evaluated upon
a full solution of the underlying boundary value problem,
and then a change of geometries is proposed to lower the
field concentration via a sensitivity analysis (Haftka and
Grandhi, 1986; Allaire and Jouve, 2008). This process is
iterated until a local minimum of field concentration is
achieved. This approach is computationally intensive and
the final result, though could be satisfactory for a target
application, cannot give a definitive answer to the global
minimum. For the global minimum, one has to use the
indirect method of first finding a lower bound on the con-
centration factor and then construct geometries to attain
the lower bound.

In the context of linear elasticity, the problem of mini-
mum stress or strain concentration has been discussed
and reviewed by Sternberg (1958) and Wheeler (1992).
Recently, there has been significant progress on a general
theory concerning minimum field concentration for gen-
eral measures of local fields that include the local Von
Mises stress and strain (Alali and Lipton, 2009), hydrostatic
stress and strain (Lipton, 2005, 2006), and local mixed
modes of stress and strain (Alali and Lipton, 2012). The
theory has also been established in much broader physical
contexts including thermo-elastic composites (Chen and
Lipton, 2012) and conductive composites (Lipton, 2003,
2004). The existing results concerning optimal geometries
clearly suggest that the uniformity of field in the inhomo-
geneities is intimately related with the optimality of the
geometries for minimum field concentration. Also, the
optimal microstructures such as coated ellipsoids that
achieve minimum field concentration, under suitable alge-
braic assumptions about the material properties, turn out
to be optimal microstructures attaining the Hashin–Shtrik-
man’s bounds of the effective properties of two-phase
composites. As shown in recent works of Liu et al. (2007)
(accepted), a new class of geometries, namely, E-inclusions
and periodic E-inclusions,1 have similar uniformity prop-
erty as ellipsoids and achieve the Hashin–Shtrikman bounds
for composites. One may wonder if they are also the optimal
geometries that minimize the field concentrations. Our main
goal here is to report that the answer to the above question
is affirmative. We also find explicitly the relationship
between the average applied strain E and the shape matrix
Q of the E-inclusions with minimum strain or stress concen-
tration (cf., (40)). Since the shape matrices of E-inclusions

have to be positive semi-definite, E-inclusions being the
solutions requires that the average applied strain has to sat-
isfy some algebraic conditions. Beyond this region, the
reader is referred to Cherkaev et al. (1998) and Vigdergauz
(2006, 2008) for approximate solutions and important
insight.

The paper is organized as follows. In Section 2 we for-
mulate and state the mathematical optimization problem
in the context of linear elasticity. The formulation allows
for simultaneous consideration of finite many inhomoge-
neities and periodic array of inhomogeneities and in both
two and three dimensions. The lower bounds for stress
and strain concentration factors are derived in Section 3.
In Section 4 we show that E-inclusions indeed achieve
the lower bounds of minimum stress or strain concentra-
tion. We conclude and provide an outlook of potential
engineering applications in Section 5.

Notation. Since stress and strain are symmetric tensor
fields, we introduce the following lp-norm of a symmetric
matrix M 2 Rn�n

sym for p 2 ½1;1�:

kMklp :¼
Xn

i¼1

jkiðMÞjp
 !1=p

; ð1Þ

where k1ðMÞ 6 � � � 6 knðMÞ are the ordered eigenvalues of
the symmetric M. We remark that kMklp ¼ ðM �MÞ

1=2 is
the usual Euclidean norm for p ¼ 2; kMklp ¼

Pn
i¼1jkiðMÞj

if p ¼ 1, and kMklp ¼maxfjkiðMÞj : i ¼ 1; . . . ;Ng if p ¼ 1.

2. Problem statement

Consider an infinite homogeneous elastic body occupy-
ing the entire Euclidean space Rn(n ¼ 2 or 3). Let
C0 : Rn�n

sym ! Rn�n
sym be the fourth-order stiffness tensor of

the body, u : Rn ! Rn be the displacement, and
r : Rn ! Rn�n

sym be the stress. Assume that the body is under

the application of an average strain for some E 2 Rn�n
sym:

uðxÞ ¼ Exþ Oð1Þ as jxj ! þ1: ð2Þ

In the absence of body force, the equilibrium state of
the body requires that

divr ¼ 0 in Rn: ð3Þ

Also, it is clear that a solution to the above equation
with the boundary condition (2) is given by

u ¼ u0 :¼ Ex in Rn:

Let Y � Rn be a ‘‘representative volume element’’ of the
body. We now introduce N mutually disjoint inhomogene-
ities Xa � Y (a ¼ 1; . . . ;N) of materials with stiffness tensor
Ca. Two scenarios will be considered: (i) the inhomogene-
ities are distributed in a bounded region in Rn, and (ii) the
inhomogeneities are distributed periodically in the whole
space Rn. The representative volume element Y is taken
as the entire space Rn for the former case whereas, without
loss of generality, can be assumed to be Y ¼ ð0;1Þn for the
latter case. We remark that the latter case corresponds to a
periodic composite with infinitely many inhomog-
eneities occupying fXa þ

Pn
i¼1kif i : a ¼ 1; . . . ;N; k1; . . . ; kn

are integersg. (f1; . . . ; fn is the basis of our rectangular
1 E-inclusions or periodic E-inclusions in two dimensions are first

constructed by Vigdergauz (1976, 1986).
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