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a b s t r a c t

This work presents a theoretical framework for solving the field distributions of a piezo-
electric–piezomagnetic fibrous composite subjected to generalized plane strain with trans-
verse electromagnetic fields. The matrix is infinite containing arbitrarily distributed
circular cylinders, which may have different sizes and material properties. By introducing
an eigenstrain corresponding to the electro-magneto-elastic effect, this coupling problem
can be reduced to an equivalent plane elasticity problem. The classic work of Muskhelish-
vili to obtain the elastic potential of a composite is generalized to the current multi-field
multi-inclusion media. Several numerical examples are presented to demonstrate the
effectiveness of the approach.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The magneto-electric (ME) coupling refers to the polar-
ization induced by a magnetic field, or conversely the mag-
netization induced by an electric field. It was first
predicted by Landau and Lifshitz (1984) and observed by
Astrov (1960) and Rado and Folen (1961) over fifty years
ago. This ME effect has recently drawn ever-increasing
interest due to their potential applications as multifunc-
tional devices including ME data storage and switching
(Spaldin and Fiebig, 2005), modulation of optical waves
(Fiebig, 2005), and electrically microwave phase shifters
(Bichurin et al., 2002). However, the coupling is rather
weak in a single-phase material even at low temperature,
and this has motivated the study of composites of piezo-
electric and piezomagnetic media. The ‘‘product property’’
causes the ME effect in this multiferroic composite:
an applied electric field generates a deformation in the

piezoelectric phase, which in turn generates a deformation
in the piezomagnetic phase, resulting a magnetization
(Nan et al., 2008).

The promise of applications, and the indirect coupling
through strain have also made ME composites the topic
of a number of theoretical investigations. Among them,
Nan (1994), Srinivas and Li (2005) and Liu and Kuo
(2012) estimated the effective properties of ME composites
of non-dilute volume fractions by mean-field-type models.
Benveniste (1995) derived exact relations in a ME compos-
ite with cylindrical geometry. The analysis for local fields is
available for simple microstructures such as a single ellip-
soidal inclusion (Huang and Kuo, 1997; Li and Dunn, 1998),
arbitrarily distributed or periodic arrays of fibrous ME
composites (Kuo, 2011; Kuo and Pan, 2011; Kuo and
Bhattacharya, 2013), and laminates (Kuo et al., 2010). In
addition, Liu et al. (2004) and Lee et al. (2005) used finite
element method to address ME composites for general
microstructures, while Aboudi (2001) and Camacho-
Montes et al. (2009) adopted the homogenization method.
However, much of this work uses approximate methods
and models based on single inclusions to estimate the
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effective properties of composites. Exact methods that pro-
vides the detailed field distribution are limited to the med-
ium subjected to the anti-plane shear with in-plane
electromagnetic fields due to the complexity.

In a classic work, Muskhelishvili (1975) used the Kolo-
sov–Muskhelishvili potentials with truncated Laurent ser-
ies for elastic problems with circular boundaries.
Analogous representations were employed by McPhedran
and Movchan (1994) for a pair and a square array of circu-
lar elastic inclusions, by Buryachenko and Kushch (2006)
for a matrix reinforced two linearly elastic isotropic
aligned circular fibers, and by Kushch et al. (2008) for the
progressive damage in the fiber reinforced composite. This
method was extended to investigate the multiple piezo-
electric inclusions in a non-piezoelectric matrix (Yang
and Gao, 2010), and for a three-phase thermo-electro-mag-
neto-elastic cylinder model (Tong et al., 2008). In addition,
a Galerkin boundary integral method has also been devel-
oped to address the elastic composites with multiple circu-
lar cylinders (Mogilevskaya and Crouch, 2001), while
Eshelby’s equivalent inclusion for a fibrous piezoelectric
inhomogeneity was proposed by Xiao and Bai (1999). In
this paper, we generalize Muskhelishvili’s methodology
to a fibrous composite made of piezoelectric and piezo-
magnetic phases under generalized plane strain
ðe0

13 ¼ 0; e0
23 ¼ 0; e0

33 – 0Þ with transverse electromagnetic
fields. Specifically we seek the stress and displacement dis-
tributions of the composite.

The remainder of this paper is organized as follows. In
Section 2 we formulate the equation for a piezoelectric–
piezomagnetic composite under generalized plane strain
with transverse electromagnetic fields. We show that the
multi-field coupled problem can be reduced to an equiva-
lent plane elastic problem with a corresponding uniform
eigenstrain. In Section 3 we generalize the work of
Muskhelishvili (1975) to obtain a representation of the
solution. The basic idea is to express the stress and dis-
placement via two complex potentials and expand each
field in each medium in a series. We use this method to
study selected systems with sufficient accuracy in
Section 4.

2. General framework

Let us consider an infinite medium containing N arbi-
trarily distributed, parallel and separated circular cylinders
(Fig. 1). The domain of the pth circular cylinder is denoted
Vp; p ¼ 1;2; . . . ;N, and the remaining matrix is denoted
Xm. We assume that the cylinders and the matrix are made
of distinct phases: transversely isotropic piezoelectric or
piezomagnetic materials. A global Cartesian coordinate
system is introduced with x1- and x2-axes in the plane of
the cross-section and x3-along the axes of the cylinders
(Fig. 1). The centers of the pth circular cylinder are desig-
nated as Op, each of which may have different radii ap.

Assume that the composite is subjected to in-plane
mechanical strain e0

11; e0
22 and e0

12 (or in-plane stress
r0

11; r0
22 and r0

12) at infinity and uniform strain e0
33, electric

field E0
3 and magnetic field H0

3 in the x3-direction. It can be
shown that the general constitutive law for the non-vanishing

field quantities can be written in a compact form as
(Benveniste, 1995)
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Here rij and eij are the stress and strain; Di and Ei are the
electric displacement and electric field; Bi and Hi are the
magnetic flux and magnetic field, respectively.
C11; C12; C13; C33, and C66 are the elastic moduli, e31 and
e33 are piezoelectric constants, q31 and q33 are piezomag-
netic constants, and j33; l33, and k33 are the dielectric per-
mittivity, magnetic permeability and magnetoelectric
coefficients, respectively.

The constitutive equation (2.1) are rather complicated.
However, it is observed that e33; E3, and H3 are constants
in the composite (Tong et al., 2008). Thus we can introduce
an uniform eigenstrain field

e� ¼ e�11 ¼ e�22

¼ ð�C13e33 þ e31E3 þ q31H3Þ=ðC11 þ C12Þ: ð2:2Þ

Substitution of Eq. (2.2) into Eq. (2.1) yields

r11 þ r22 ¼ 2K e11 þ e22ð Þ � 2e�½ �;
r22 � r11 ¼ 2l e22 � e11ð Þ;
r12 ¼ 2le12 ð2:3Þ

and

r33 ¼ C13ðe11 þ e22Þ þ C33e33 � e33E3 � q33H3;

D3 ¼ e31 e11 þ e22ð Þ þ e33e33 þ j33E3 þ k33H3;

B3 ¼ q31 e11 þ e22ð Þ þ q33e33 þ k33E3 þ l33H3; ð2:4Þ

where K ¼ ðC11 þ C12Þ=2 is the in-plane bulk modulus, and
l ¼ ðC11 � C12Þ=2 is the transverse shear modulus. It is

O

Fig. 1. The cross-section of the multiple fibers composite.
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