
Development of plastic nonlinear waves in one-dimensional
ductile granular chains under impact loading

Tommy On a, Peter A. LaVigne b, John Lambros a,⇑
a Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801, USA
b Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green Street, Urbana, IL 61801, USA

a r t i c l e i n f o

Article history:
Received 22 August 2012
Received in revised form 27 June 2013
Available online 13 August 2013

Keywords:
Split Hopkinson pressure bar
Nonlinear stress wave
Granular chain
Plasticity

a b s t r a c t

A modified split Hopkinson pressure bar (SHPB) was used to load one-dimensional granu-
lar chains of metallic spheres under impact loading rates. These homogeneous chains, com-
prised of brass spherical beads ranging from a single sphere to a chain of sixteen, are of
interest because of their unique wave propagation characteristics. In the elastic range,
for loads around 10 s of N, nonlinear elastic solitary waves have been observed to form.
In this work, loading magnitudes spanning from 9 kN to 40 kN – considerably higher than
most previous works on these systems which have been conducted in the elastic regime –
cause the granular chains to severely deform plastically. The aim of this study is to identify
whether a nonlinear solitary-type wave will be generated under such high load levels, and
if so, under what conditions (e.g., chain length, load level, etc.) it will do so. The propagating
pulse was found to assume a distinctive shape after travelling through five beads, similar to
the elastic case where solitary waves are realized with a traveling wavelength of five bead
diameters. The wave speed of the plastic pulses observed here was seen to depend on max-
imum force, indicating that indeed it is a nonlinear wave in nature and is comparable to the
elastic solitary wave. Locally, the plastic dissipation at every contact point through the
chains was studied by measuring the residual plastic contact area. It was found that after
the formation of the plastic nonlinear solitary wave had occurred there is also decreasing
plastic deformation along the chain length except at the end beads in contact with the
SHPB, which rebound into the SHPB bar causing larger plastic dissipation locally. To our
knowledge this research is the first effort to investigate in detail the development and evo-
lution of solitary-like waves in the plastic regime and will form the basis of future work in
this area.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A granular chain, which in its simplest form can be
thought of as a series of spheres in contact, refers to a
one-dimensional (1D) array of macroscopic particles under
physical contact. Solitary waves can occur in elastic granu-
lar chains under dynamic loading, and have been exten-
sively studied both numerically and experimentally in
elastic chains, e.g., (Sen et al., 2008). Solitary waves result

from the nonlinear nature of the force–displacement rela-
tion governing the contact between two elastic particles.
However, unlike the elastic case, little work has been per-
formed in the plastic regime of grain deformation, even in
the simplest case of a 1D chain. In the plastic regime, two
types of nonlinear response are possible: (i) the nonlinear
contact between neighboring grains which is responsible
for the solitary wave generation in the elastic case, and
(ii) the material nonlinearity introduced by plasticity
which will inevitably occur at the high stress concentration
region of the contact points. The interplay between these
two nonlinear phenomena forms the focus of the present
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effort which aims to gain a better understanding of
whether plastic solitary-like waves form in 1D ductile
chains and what governs their formation and propagation
(e.g., chain length, applied load, bead material etc.).

The contact between two elastic spheres is commonly
modeled as the Hertz contact problem (Coste and Gilles,
1999; Hertz, 1896). The formulation of the Hertz contact
between spheres, detailed in Johnson (1985), is based on
the following three assumptions: (i) the radii of curvature
of the contacting bodies are large compared to the size of
the contact region, allowing each surface to be treated as
an elastic half-space, (ii) the dimensions of each body are
large compared to the radius of the contact region allowing
the indentation stresses and strains to be independent of
the evolving geometry, and (iii) the contact is frictionless.
In such a case, the elastic force Fo exerted on two identical
spheres in contact is related to the distance of approach d
of their centers by

Fo ¼
2E
3

ffiffiffi
a
2

r
d3=2; with E � E

1� m2 ; ð1Þ

where a is the sphere radius, E is the Young’s modulus, and
m is the Poisson’s ratio (Coste and Gilles, 1999). When d, the
distance between the centers of two spheres, becomes
greater than 2a, no force is exerted, as shown schemati-
cally in Fig. 1(a) (d is taken to be positive in compression).
Fig. 1(b) shows a visual representation of d and d.

It has been shown that a chain of spheres will generate
nonlinear stress waves resulting from this Hertzian contact
(Lazaridi and Nesterenko, 1985) provided the deformation
time is larger than the characteristic period of particle
oscillation (Nesterenko, 2001). As a consequence of the
interaction law shown in Fig. 1(a), which exhibits a ‘‘sonic
vacuum’’ (Gavrilyuk and Nesterenko, 1993; Nesterenko
1992) since it is not linearizable even for small magnitudes
of force, a solitary wave will be generated in the granular
chain. However, this law has a natural limit caused by pos-
sible plastic flow of the material near the contacts, which
can occur for fairly small loads (Johnson, 1985; Wang
et al., 2013). This significantly limits the extent of elastic
behavior during solitary wave propagation. From the
extensive study of 1D elastic systems certain characteris-
tics of solitary waves have become known: (i) the solitary
wave maintains its shape as it propagates through the

chain, (ii) the wave propagates with a width of approxi-
mately five particle diameters in the chain, and (iii) the
speed of the wave is a function of the maximum force,
material properties of the particle, and the size of the
particle. The velocity of propagating waves in the elastic
1D system scales as F1=6

m , where Fm is the maximum force
in the wave. The exact solution for the continuum approx-
imation of this solitary wave shown in Eq. (2) contains the
shape of a cos4 function and a compact support equal to
five particle diameters (Coste et al., 1997; Nesterenko
and Lazaridi, 1987; Nesterenko, 1984; Sadd et al., 1997;
Sen et al., 2008)

vðtÞ ¼ duðtÞ
dt
¼ 25

16
cos4ð2t=

ffiffiffiffiffiffi
10
p
Þ ð2Þ

In the strongly nonlinear regime (Nesterenko, 1984), the
speed of the solitary wave, Vs, becomes (Daraio et al., 2006)

Vs ¼ 0:6802
2E

aq3
2ð1� v2Þ

 !1=3

F1=6
m ð3Þ

However, this relation has not been verified for higher
dimensions due to geometrical effects (Goddard, 1990)
although recent experiments and simulations suggest that
it holds in 2D as well (Leonard et al., 2011; Awasthi et al.,
2012). The high forces applied to the granular chains in this
paper also induce a large amount of plasticity, which
produces an initial monotonic shock profile instead of an
oscillatory wave. A similar effect was observed in the
analysis of a granular chain with viscous dissipation where
the dissipation was modeled by adding a term to the
nonlinear spring stiffness that depended on relative bead
center-to-center velocity (Herbold and Nesterenko, 2007).

Further studies on the dynamic behavior of granular
media have been conducted by Sadd et al. (1997), Shukla
et al. (1993, 1992, 1991, 1990) who used dynamic photo-
elasticity, simulations, and numerical models to study
wave propagation in granular chains made of polymeric
disks. It was found that at a given contact, the load from
the propagating wave increased from zero to a peak value,
and then gradually decreased to zero. The peak loads de-
creased by 20% as the wave traveled through five disk
diameters, which is considerably higher than the two per-
cent drop observed in a bar of uniform material over the
same distance. Additional experiments conducted by Coste

Fig. 1. (a) Nonlinear force–displacement contact relation between two spheres. (b) Diagram of two spheres before and during compression.
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