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a b s t r a c t

Internal stability of isotropic nonlinear elastic materials under homogeneous deformation
is studied. Results provide new insight into various intrinsic stability measures, first pro-
posed elsewhere, for generic nonlinear elastic solids. Three intrinsic stability criteria
involving three different tangent elastic stiffness matrices are considered, corresponding
to respective increments in strain measures conjugate to thermodynamic tension, first
Piola–Kirchhoff stress, and Cauchy stress. Primary deformation paths of interest include
spherical (i.e., isotropic) deformation, uniaxial strain, and simple shear; unstable modes
are not constrained to remain along primary deformation paths. Effects of choices of sec-
ond- and third-order elastic constants on intrinsic stability are systematically studied for
physically realistic ranges of constants. For most cases investigated here, internal stability
according to strain increments conjugate to Cauchy stress is found to be the most stringent
criterion. When third-order constants vanish, internal stability under large compression
tends to decrease as Poisson’s ratio increases. When third-order constants are nonzero, a
negative (positive) pressure derivative of the shear modulus often promotes unstable
modes in compression (tension). For large shear deformation, larger magnitudes of third-
order constants tend to result in more unstable behavior, regardless of the sign of the pres-
sure derivative of the shear modulus. A compressible neo-Hookean model is generally
much more intrinsically stable than second- and third-order elastic models when Poisson’s
ratio is non-negative.

Published by Elsevier Ltd.

1. Introduction

Stability of elastic solids under finite deformation has
been the subject of numerous studies, with early work on
intrinsic stability of crystals due to Born (1940). Nonlinear
elastic anisotropic solids (e.g., single crystals) have been
analyzed in a number of works (Hill, 1975; Hill and Milstein,
1977; Milstein and Hill, 1979; Wang et al., 1993, 1995;
Morris and Krenn, 2000), as have nonlinear elastic isotropic
solids (Hill, 1957; Rivlin, 1974; Rivlin and Beatty, 2003).

Various criteria for stability of elastic solids have been
proposed in the literature, beginning with work of Born

(1940) who associated stability with a positive definite
stiffness measure and local convexity of internal energy
expressed in terms of a Lagrangian Green strain measure.
In a real physical system, the appropriate choice of stability
criterion depends on the method of static incremental load
application (e.g., dead loading in one or more directions
(Rivlin, 1974)) and any constraints associated with bound-
ary conditions, and such a criterion may not correspond to
Born’s. When considering ‘‘intrinsic’’ or ‘‘internal’’ stability
of a unit cell or unit cube of a given material, from the con-
tinuum viewpoint or using atomic theory, the proper
choice of stability measure is ambiguous when the precise
loading mechanism is left unspecified. Different choices of
conjugate stress–strain measures (i.e., different general-
ized coordinates and conjugate forces) can lead to different
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local convexity conditions and different intrinsic stability
criteria (Hill, 1975; Hill and Milstein, 1977). As stated by
Milstein and Hill (1979), consistency of classical, unique,
and environment-dependent stability criteria with intrin-
sic stability or convexity arguments such as Born’s requires
a special environment in which loads can be varied to fol-
low the material during any disturbances while fixing val-
ues of conjugate forces, which in turn are non-unique since
they depend on the choice of generalized coordinates (i.e.,
the choice of strain measure). This load environment used
to probe stability (e.g., via virtual deformations at a fixed
stress) need not correspond to the loading program used
to achieve the stressed equilibrium state from which sta-
bility is tested (Hill and Milstein, 1977; Milstein and Hill,
1979).

Intrinsic stability requirements considered in the pres-
ent work lead to restrictions on various incremental tan-
gent elastic moduli; stability measures of this sort
applied to superposed deformation variations in any direc-
tion may require that an energy function be locally convex,
or at least that a particular stiffness matrix (i.e., Hessian) be
positive definite, at the current equilibrium state. For non-
linear materials of high symmetry (e.g., isotropic solids)
under simple deformation paths, such intrinsic stability
requirements can often be stated succinctly in terms of
restrictions on a few strain-dependent elastic coefficients.
In linear elastic solids, such requirements degenerate to
the usual constitutive constraints of positive bulk and
shear moduli. As noted above and explained in Hill and
Milstein (1977) and Parry (1978), intrinsic stability mea-
sures like those considered herein do not depend on the
load environment, but do depend on the choice of conju-
gate stress–strain measures. Comparisons among intrinsic
criteria involving different Lagrangian strain measures
were derived for generic isotropic elastic solids under
positive principal stresses (Parry, 1978).

The distinction between material instability and struc-
tural instability should be noted. As defined in the present
work, material instability correlates with intrinsic instabil-
ity, and depends only on material properties and loading
protocol. Intrinsic stability criteria are local since they con-
sider only homogeneous stress/deformation states up to
the onset of instability. In nonlinear materials (e.g., nonlin-
ear elastic, elastic–plastic, or damaged solids), the onset of
material instability depends on strain, but in linear elastic
solids, material stability is independent of strain and
simply requires positive definiteness of the tensor of elas-
tic constants. In contrast, structural instability criteria are
global rather than local, depending on geometry of the
body. The stress/strain state may be inhomogeneous prior
to onset of structural instability. Structural instability may
occur even if the material is intrinsically stable, and can be
induced by loads even in linear elastic materials. A
representative example is buckling of a slender column
under compression.

Intrinsic stability properties of solids under large com-
pressive stress or pressure are of interest for applications
in ballistics, impact phenomena, and earth and planetary
sciences. Elastic instability may signal the onset of failure
or localization phenomena, e.g., slip, fracture, or phase
transformations (Hill, 1975; Wang et al., 1993; Morris

and Krenn, 2000). Hard materials of lower symmetry such
as quartz (Gregoryanz et al., 2000), silicon carbide
(Clayton, 2010), and boron carbide (Clayton, 2012) exhibit
a decrease in certain shear elastic stiffness components
with increasing pressure. At high pressures, this tendency
may lead to the onset of instability and subsequent amor-
phization (Chen et al., 2003), which in the case of ceramic
materials hinders performance in ballistic applications. In
contrast to these polyatomic ceramic materials, most
elemental engineering materials demonstrate increasing
shear moduli with increasing pressure (Guinan and
Steinberg, 1974), which would tend to enhance rather than
diminish internal stability at large compressions.

Nonlinear elastic models of anisotropic single crystals
(Wallace, 1972; Teodosiu, 1982; Clayton, 2011) typically
assume a strain energy function written as a Taylor poly-
nomial in Green (Lagrangian) elastic strain
E ¼ 1

2 ðF
TF � 1Þ, with F the deformation gradient. Such a

model, when terms of up to third order are maintained
(i.e., second- and third-order elastic constants) provides
reasonably accurate descriptions of stresses and wave
propagation for moderate compressions (Thurston, 1974;
Clayton, 2009); however, Eulerian strain measures may
be more accurate for extreme pressures (Weaver, 1976;
Jeanloz, 1989).

The present work focuses primarily on isotropic elastic
solids of third order. Such materials are described by two
independent second-order elastic constants and three
independent third-order elastic constants (Murnaghan,
1937; Teodosiu, 1982). Because of the limited number of
constants, systematic study of effects of choices of con-
stants on intrinsic stability for simple monotonic deforma-
tion paths is tractable, and is undertaken in this work.
Third-order constants are related explicitly to pressure
derivatives of bulk and shear moduli in the reference state
(Thurston et al., 1966; Guinan and Steinberg, 1974;
Teodosiu, 1982); experimental data (Guinan and Steinberg,
1974; Steinberg, 1982) thus provide realistic bounds on
combinations of third-order constants. Choices of third-or-
der constants yielding a decreasing shear stiffness with
increasing compression provide insight into behavior of
aforementioned ceramic materials demonstrating shear
instabilities at high pressure (Gregoryanz et al., 2000; Chen
et al., 2003). It is noted that single crystals of such materi-
als are highly anisotropic (e.g., trigonal symmetry: six sec-
ond-order and fourteen third-order elastic constants) and
systematic study of effects of varying all elastic constants
individually on stability is intractable. For comparison,
intrinsic stability of a class of compressible neo-Hookean
solids (Simo and Pister, 1984), which demonstrate a
strongly increasing bulk modulus with pressure, is also
considered.

This paper is organized as follows. Requisite quantities
associated with internal stability are derived in Section 2.
Intrinsic stability of third-order elastic solids in terms of
three different criteria from the literature (Born, 1940; Hill,
1975; Wang et al., 1993) is analyzed in Section 3. For each
criterion, minimum eigenvalues of a particular tangent
stiffness matrix are examined for different choices of sec-
ond- and/or third-order elastic constants for an element
of material undergoing spherical deformation, uniaxial
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