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a b s t r a c t

In this study the third-order variational bound is explicitly derived for nonlinear compos-
ites subject to hydrostatic deformation. By formulating the stochastic extreme principle for
nonlinear boundary value problems, the third-order upper bound of the potential is
derived for nonlinear two-phase composites, which is further explicitly specialized to
porous media. Examples of application are provided by applying the derived bound to
various cases of composites and porous media characterized with power law nonlinearity.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The earliest nonlinear models of heterogeneous materi-
als dealt with crystal plasticity and two elementary bounds
of Taylors and Sachs were given corresponding to Voigt’s
and Reuss’ bounds for linear-elastic composites. Following
the breakthrough of Eshelby’s ellipsoidal solution (Eshelby,
1957) in micromechanics, various nonlinear models have
been proposed since 1960s, which are roughly classified
into following two groups, mean-field models and varia-
tional models.

1.1. Mean-field models

The mean-field models basically apply the Eshelby’s
ellipsoidal solution to evaluate the first-order moment or
averaged phase strain or stress, similar to Mori–Tanaka
scheme in linear-elastic micromechanics. One of the first
self-consistent models was proposed by Kröner (1958)
where local stress and plastic strain are assumed to be
uniform in the grains, while individual plasticity of grains
is assimilated into the overall equivalent medium

self-consistently. To account for anisotropic plastic interac-
tions among crystals, an incremental self-consistent model
was proposed by Hill (1965) with stiff responses close to
Taylor’s upper bound due to the assumption of uniform
tangent moduli in the matrix. The Hill’s model was later
extended to rigid viscoplasticity by Hutchinson (1976).
To reduce the errors accumulated in the incremental pro-
cess, Molinari et al. (1987) developed a non-incremental
tangent model, which was later generalized to an affine
formulation (e.g., Masson et al., 2000). The self-consistent
model using phase-uniform secant moduli was proposed
by Berveiller and Zaoui (1979), which is also called the
classical secant model. In dealing with various effects due
to thermal, plastic, damage, phase transformation, etc.,
Dvorak (1992) proposed a so-called transformation field
analysis where the transformation strain is assumed uni-
form in each phase. In the mean-field models, there is
however a lack of clear link between the statistics of micro-
structure and properties, e.g. the third and higher-order
correlation functions are not accounted for. Unlike the var-
iational bounds providing a range of overall properties to
account for various statistics of microstructure, a mean-
field model leads to a deterministic estimate that corre-
sponds to a certain type of microstructure only, e.g. most
of self-consistent approximations are limited to weakly
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inhomogeneous materials such as dilute cases. For highly
heterogeneous materials many mean field models may re-
sult in violation of theoretical bounds as shown e.g. in
Gilormini (1996). Mean-field models normally lead to
over-stiff responses, and a typical defect is no yielding for
hydrostatic deformation of a dry porous medium.

1.2. Variational and 2nd-order models

A great advantage of variational models is by providing
rigorous bounding properties, the bounds are generally
applicable to a wide class of materials. By incorporating
statistics of microstructure into the models, nonlinear var-
iational bounds account for the second and higher order
statistical moments of field fluctuations beyond phase
averages. A nonlinear variational model was first proposed
by Talbot and Willis (1985), following which a major at-
tempt was made to extend the linear Hashin–Shtrikman
(HS) bound to the nonlinear regime (Ponte Castañeda,
1991). Qiu and Weng (1992) showed that the fluctuations
of strain in the matrix can be accounted for by using an
energy concept to define the effective stress, instead of
average stress in the mean field models. Suquet (1993)
proposed variational bounds for power law materials. A
number of works were explicitly devoted to the second-or-
der estimates, e.g. (Hu, 1996; Buryachenko, 1996; Ponte
Castañeda, 2002) among others. There was also a multiple
scattering solution to account for higher-order effects
beyond mean field approximations (Talbot and Willis,
1997). In Nan and Yuan (1993) further efforts were made
to incorporate third-order statistics into variational
models.

In this study the third-order bounds are explicitly
derived in terms of the third order geometric parameters
for nonlinear composites subject to hydrostatic deforma-
tion. In Section 2, following the linear principles formu-
lated in Xu (2009) the stochastic extreme principle is
formulated for nonlinear boundary value problems. In
Section 3, the third-order upper bound of the potential is
derived for nonlinear two-phase composites, which is
explicitly specialized to porous media. In Section 4, the
variational bound is applied to various cases of composites
and porous media characterized with power law
nonlinearity.

2. Stochastic extreme principle

The potential and the dual of a nonlinear phase i are
defined as

/iðêÞ ¼
Z ê

0
rde ð1Þ

/�i ðr̂Þ ¼
Z r̂

0
edr ð2Þ

which are complementary to each other in that

/iðêÞ þ /�i ðr̂Þ ¼ r̂ê ð3Þ

where @/iðeÞ
@e

���
e¼ê
¼ r̂ and @/�i ðrÞ

@r

���
r¼r̂
¼ ê , and the two are con-

jugated to each other. In nonlinear elasticity the functions
(1)–(3) correspond to free energy. For elastoplasticity
problems, the energy consists of both free energy and dis-
sipated or plastic energy.

To homogenize the energy potential of a random two-
phase composite, let the unit volume composite body be
subjected to a displacement boundary condition ~u. Assume
the characteristic size of heterogeneity is sufficiently small
compared with the unit volume domain D. The total poten-
tial of the Dirichlet boundary value problem is written,
accordingly, as

Iðe;xÞ ¼
Z

D
/ðe; x;xÞdV �

Z
@Du

~utdS ð4Þ

where the potential consists of the contribution from each
phase

/ðe; x;xÞ ¼ /1ðe1Þ þ /2ðe2Þ ð5Þ

with

e1 ¼ ev1 e2 ¼ ev2 ð6Þ

The random morphological functions vi ðx;xÞ = 1 when
x 2 Di and 0 otherwise, i = 1,2, with x indicating a sample
in random space X. When the characteristic size of
heterogeneity is sufficiently smaller than the unit volume
domain D, i.e. the scales are separated or decoupled, and
the random microstructure satisfies the statistical
homogeneity and ergodicity condition, the randomness
argument disappears on the left side of (4) by notingZ

D
/ðe; x;xÞdV ¼

Z
X

/ðe;x;xÞdPðxÞ

or simply

h/ðe; x;xÞi ¼ /ðe; x;xÞ
�

ð7Þ

The first order variation of the total potential (4)dI
directly leads to the strong form equilibrium equation
and the displacement boundary condition. Assume the
potential function of each phase satisfies the positive
definiteness of the tangent moduli

@2/iðeÞ
@2e

> 0 ð8Þ

The second-order variation of (4) yields that

d2I

d2e
¼ v1

@2/1ðe1Þ
@2e1

þ v2
@2/2ðe2Þ
@2e2

> 0 ð9Þ

which leads to the stochastic minimization principle

IEð�eÞ ¼Min
e2E

IðeÞ ð10Þ

Where �e denotes the macroscopic strain resulting from the
boundary condition ~u, and E the function space for all the
admissible strain functions satisfying the displacement
boundary condition.

Correspondingly, the effective potential is obtained as

/Eð�eÞ ¼Min
e2E

/ðeÞ ð11Þ
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