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Nonlinear three-dimensional constitutive equations are developed for analyzing inelastic
effects that cause dissipation in biological tissues. The model combines a structural icosa-
hedral model of six discrete fiber bundles with a phenomenological model of the inelastic
distortional deformations of the matrix containing the fibers. The inelastic response of the

KeJ(WordS-' matrix is characterized by only three material parameters, which can be used to model
gf‘ls"tm?{) del both rate-independent and rate-dependent response with a smooth elastic-inelastic tran-
D;:;r;;‘:ioner mode sition. Also, a robust, strongly objective scheme is discussed, which allows the model to be

easily implemented into finite element computer codes. Examples show that the model
predictions compare well with experimental data for the nonlinear, anisotropic, inelastic
response of a number of tissues. Specifically, the model simulated the biaxial stretching
of rabbit skin with an error of 15.7%, stress relaxation of rabbit skin with an error of
17.2%, simple shear of rat septal myocardium with an error of 21.6%, and uniaxial stress
in compression of monkey liver with an error of 8.3%.

© 2013 Elsevier Ltd. All rights reserved.

Soft tissue mechanics

1. Introduction

Constitutive models for soft biological tissues can be
used for a variety of applications, which include: design
of biomedical devices, surgical simulators, assessment of
the relative effectiveness of specific surgical procedures,
simulations of crash dummies, and even for improving
realism of animation in movies. Collagen and elastin fibers,
which are present in many biological tissues cause aniso-
tropic response. Although it is known that biological
tissues exhibit hysteretic behavior in cyclic loading, it is
most common to ignore this dissipative response and mod-
el tissues as anisotropic hyperelastic materials.

Some authors have proposed models for the dissipative
response of tissues. Phenomenological models include the
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work of Rubin et al. (1998) and Rubin and Bodner (2002),
which present constitutive equations for modeling the
dissipative response of soft tissues. Also, Nasseri et al.
(2002) use a multi-component Maxwell model to charac-
terize viscoelastic properties of pig skin in shear. Bischoff
et al. (2004) proposed a 15-parameter Langevin model to
characterize soft tissue viscoelasticity using a three-ele-
ment rheological network model introduced by Bergstrom
and Boyce (1998). Bischoff (2006) and Flynn et al. (2011b)
model the rheology of biological tissues using the concept
of quasi-linear viscoelasticity (QLV) introduced by Fung
(1993). However, soft tissues exhibit nonlinear
viscoelasticity, in general, and the assumptions of the
QLV model do not hold in all cases (Einat and Lanir,
2009). Another approach is to use structurally based
models, which characterize the collective response of fiber
bundles. Examples of these structural models include the
works of Lanir (1979) and Lokshin and Lanir (2009), which
use the quasi-linear viscoelastic response of fibers to
capture the rheology of tissues. In particular, Lokshin and
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Lanir (2009) compared their model predictions with a large
set of experimental theoretical data. Ehret et al. (2009,
2010) have developed a three-dimensional anisotropic
generalization of the standard three-parameter solid to de-
velop structural models for soft biological and collagenous
tissues. Also, mention is made of a recent review of the
constitutive modeling of soft biological tissues that can
be found in Ehret (2011). In particular, Chapter 6 in Ehret
(2011) describes dissipative effects, which are modeled
using evolution equations for generalized structural
tensors.

One objective of the present work is to introduce simple
constitutive equations, which can model dissipative
response as well as anisotropic response due to a discrete
set of fibers. This model has features of both the phenome-
nological and structural models described above. Specifi-
cally, the model can be used to quantify the potential
influence of inelastic dissipation on cyclic loadings that oc-
cur in essential activities like heart pumping and breathing.

Here, it is assumed that the biological tissue is a com-
posite of elastic fibers embedded in a dissipative matrix.
The strain energy function for the biological tissue depends
on the total dilation J to control volume changes, on a mod-
ified generalized orthotropic invariant y to control aniso-
tropic response to distortional deformation, and on a
measure « of elastic distortional deformation of the dissi-
pative matrix to predict hysteretic behavior. The general-
ized invariant is based on six discrete fiber bundles as
described in Flynn and Rubin (2012) and is modified to
limit attention to distortional deformations. The dissipa-
tive matrix is modeled using the elastically isotropic con-
stitutive equations developed in Hollenstein et al. (2013),
which model a smooth inelastic transition. Specifically,
here the hardening variable is modified to include explicit
dependence on the total strain. An important feature of the
constitutive equation is that the evolution equation for the
inelastic response can be integrated numerically using a
strongly objective algorithm that needs no iteration. The
resulting tissue model exhibits anisotropic and dissipative
response, which is nearly rate-independent for high en-
ough loading rates. It also exhibits rate-dependent stress
relaxation, and a simplified form of preconditioning. Since
the strain energy function for distortion of the tissue de-
pends on both an elastic deformation measure of distortion
of the dissipative matrix and on a total distortional defor-
mation measure of the fiber bundles in a coupled form,
inelasticity is exhibited by both the matrix and the fibers.
Also, the entire constitutive model is properly invariant
under Superposed Rigid Body Motions (SRBM). In addition,
the equations can easily be programmed into finite ele-
ment computer codes to model complicated tissue
response.

An outline of this paper is as follows. Section 2.1 pre-
sents the basic equations of the model and Section 2.2 pre-
sents specific simple forms for the functions. Section 2.3
discusses the numerical integration scheme and Section 3.1
presents examples showing the influence of the material
constants. Section 3.2 shows comparisons of the predic-
tions of the model with experimental data and Section 4
presents discussion and conclusions.

2. Material and methods
2.1. Basic equations

Following the work in Flynn and Rubin (2012), Elata
and Rubin (1994, 1995) and Flynn et al. (2011a) use is
made of the unit vectors N; (i =1,2,...,6), which character-
ize the directions of opposing vertices of a regular icosahe-
dron given by
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where e; (i=1,2,3) are fixed rectangular Cartesian base
vectors. Moreover, let B; be six constant symmetric second
order tensors with the properties
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where ® is the tensor product operator, I is the second or-
der unit tensor, a - b denotes the scalar product between
two vectors and A - B = tr(ABT) denotes the scalar product
between two second order tensor {A,B}. Furthermore, let
W be a constant symmetric structural tensor (Flynn and
Rubin, 2012) defined by
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where w; are non-negative constant weights. These condi-
tions on the weights ensure that W is a positive semi-def-
inite tensor, since for an arbitrary unit vector n
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Furthermore, it is noted that in Flynn and Rubin (2012)
it was shown that the weights w; and the fiber bundle ori-
entations B; can be used to define a distribution function of
fiber bundle orientations which can be compared with his-
tological evidence.

In order to characterize the anisotropic response of the
tissue, it is recalled that the deformation gradient F from a
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