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a b s t r a c t

We present a numerical minimization procedure to determine the macroscopic ‘plastic col-
lapse strength’ of a tessellated cellular structure under a general stress state. The method is
illustrated with sample cellular structures of regular and hierarchical honeycombs. Based
on the deformation modes found by minimization of plastic dissipation, closed-form
expressions for strength are derived. The current work generalizes previous studies on
plastic collapse analysis of lattice structures, which are limited to very simple loading
conditions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Strength and energy absorption capacity of lattice
structures are governed by buckling of the cell walls or
plastic yielding of cell wall material (Evans et al., 2001;
Evans et al., 1998; Ashby, 2006; Papka and Kyriakides,
1994; Jang and Kyriakides, 2009; Babaee et al., 2012).
However, the current state of the literature on collapse of
cellular lattice structures is limited to structures subjected
to simple loading conditions such as uniaxial, biaxial or
shear loading applied at special orientations (Gibson
et al., 1989; Gibson et al., 1982; Haghpanah et al., 2013;
Onck et al., 2001; Karagiozova and Yu, 2004; Zhu and Mills,
2000). In this article, we focus on plastic deformation, and
present a method that allows numerical and algebraic cal-
culation of plastic collapse strength under arbitrary states
of stress or strain. The presented method is based on min-
imizing the internal plastic dissipation inside a unit cell of
the tessellated structure (Chen et al., 2007). To illustrate
the method, two two-dimensional networks of rigid-plas-
tic beams are considered. First, a hexagonal network (hon-
eycomb) with sixfold rotational symmetry, and second, the
first iteration of the honeycomb structure in a hierarchical

refinement scheme in which all three–edge nodes are re-
placed with smaller, parallel hexagons defined by size ratio
c, with c ¼ 0 denoting a regular honeycomb. The latter
structure, also maintaining a microscopic sixfold symme-
try, is called first order hierarchical honeycomb (Ajdari
et al., 2012), see Fig. 1. The relations between macroscopic
stress and strain states and unit cell reaction forces and
displacements, respectively, are derived in Section 2 in a
convenient canonical position which is suitable for
threefold symmetrical structures. The minimization of
plastic dissipation inside the unit cell subjected to external
forces or displacements is detailed in Section 3. We then
exploit the observed unit-cell deformation patterns to de-
rive analytical expressions for strength, to permit efficient
computation and plotting. The results from the minimiza-
tion scheme and also the derived upper bounds of plastic
collapse are presented in Section 4. Lastly in Section 5, a
summary of the current work and conclusions are given.

2. Threefold definitions of stress and strain

We begin our analysis with threefold symmetric defini-
tions of both microscopic and macroscopic stress and
strain (note that for structures without a threefold symme-
try (e.g. square honeycomb) the conventional Cartesian
coordinate system can be used readily). To carry out the
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analyses we select a unit cell, with associated tractions and
displacements, which tiles the plane to represent the
loaded lattice structure. The structural unit cell for our
hexagonal-based patterns encompasses one vertex of the
original hexagonal network, out to the midpoints of
the original hexagon sides (a distance L0=2), see Fig. 2(A).
The area associated with the unit cell is a triangle joining
the three hexagon center-points that surround this vertex,
with area 3
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0=4. The general state of stress is expressed

in terms of its normal components in the three in-plane
material directions a ¼ 0�; b ¼ 120� and c ¼ 240� :

raa; rbb; rcc . Given those three normal components, the
xy stress tensor can be written:
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where x and y axes are taken along the so-called armchair
(or ribbon) and zigzag (or transverse) directions.

We then examine the allowable external loads at num-
bered points 1, 4, 7 of the unit cell shown in Fig. 2(B). First
we argue that there are no moments applied at these
points: the 180� rotational symmetry of the tessellated
structure (and trivially the components of microscopic
stress) means that any upwards curvature at such a point
must become downwards curvature after the rotation,
and the only way these can be equal is to have the value
zero. Then, using the vertical cut line Da which intersects
horizontal sides with a spacing L0
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, we deduce the value
of radial force Fa to be raaL0
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, and similarly for radial
directions b; c. Note also that the arbitrary radial forces
Fa; Fb; Fc will not be in equilibrium so there must be
transverse forces Ga; Gb; Gc , defined as positive counter-
clockwise about the origin. Successively taking moments
of forces about pairwise intersections of Ga; Gb;Gc , we find
Ga ¼ ðFc � FbÞ=

ffiffiffi
3
p

, and cyclically.
Next, we consider relations between macroscopic strain

and relative displacements of the unit cell boundary
points. Given arbitrary radial and tangential displacements
of points 1, 4, 7, we can use rigid body displacements and
rotation to place the deformed unit cell uniquely in a
canonical position with the boundary points 1, 4, 7 still on
the a; b; c lines. In that unique placement, the boundary
point canonical radial displacements along the a; b; c lines
are named da; db; dc , where the segments 1–2, 4–5, 8–7
are generally no longer parallel to those lines. Since the
boundary loads are in equilibrium, the introduced rigid
body displacements and rotations do not affect the net
work.

Given da, the strain is uniaxial along a. Its magnitude is
the change in the unit cell x dimension divided by the ori-
ginal unit cell x dimension 3L0=4, in other words
�a ¼ 4da=3L0. Purely uniaxial strains in all three directions
can be superposed to define a general xy strain tensor:
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Fig. 1. (A) Schematics of regular and hierarchical honeycombs with one
level of hierarchy. (B) Images of regular and hierarchical (c ¼ 0:3)
honeycombs with L0 ¼ 2 cm fabricated using three-dimensional printing.
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Fig. 2. (A) Schematic of a hierarchical honeycomb where a unit cell of the structure is marked by red lines, (B) free body diagram of the unit cell of
hierarchical honeycomb.
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