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a b s t r a c t

Time-harmonic response of a vertically graded transversely isotropic, linearly elastic half-
space is analytically determined by introducing a new set of potential functions. The poten-
tial functions are set in such a way that the governing equations be simple and with phys-
ical meaning as well. In addition, the potential functions introduced in this paper are
degenerated to a complete set of potential functions used frequently for wave propagations
in homogeneous transversely isotropic media. Utilizing Fourier series and Hankel integral
transforms, the governing equations for the potential functions are solved, after which the
displacements and stresses are presented in the form of line integrals. Both the displace-
ments and stresses determined here are collapsed on the solution previously reported
for the constant profile transversely isotropic material. Because of complicated integrand
functions, the integrals are evaluated numerically and presented graphically, where the
effect of degree of change of material properties plays a major role, which may be recog-
nized easily.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in solids induced by external loading
has long been the subject of numerous investigations.
Traditionally, when one studies the phenomenon of wave
propagation in solids, the media are often assumed to be
homogeneous, isotropic, and linearly elastic continua (see
for example Lamb, 1904; Ewing et al., 1957; Achenbach,
1973; Aki and Richards, 1980; Apsel et al., 1979; Apsel
and Luco, 1983; Miklowitz, 1978; Pak, 1987; Pak and
Guzina, 2002). However, there are many natural soils
deposited through a geologic process of sedimentation
over a period of time, such as flocculated clays, silts and
sands, or rocks, foliated metamorphic, stratified sedimen-
tary, regularly jointed rocks, where determining their dis-
placements and stresses needs to take into account the
anisotropy (Wang et al., 2006). In addition, from the prac-
tical engineering point of view, many anisotropic soils are

often modeled as transversely isotropic media. Moreover,
the mechanical response of anisotropic materials with spa-
tial gradients in composition is of considerable interest in
soil/rock mechanics (Suresh, 2001). The effects of deposi-
tion, overburden, desiccation, etc., can lead geological
media, which exhibit both inhomogeneity and anisotropic
deformability characteristics (Wang et al., 2006). Thus, the
desire to understand the wave propagation in an aniso-
tropic medium has risen substantially from the recognition
that the anisotropy of materials is the norm rather than an
exception. However, because of mathematical difficulty
associated with these media, theoretical understanding of
the phenomena has not received much attention. As dem-
onstrated by Stoneley (1949), the presence of transverse
isotropy can result in significant differences in wave prop-
agation compared with the case of isotropic materials.
Likewise, Synge (1957) studied the propagation of Rayleigh
waves in a transversely isotropic medium and found that
they will propagate only if the free surface of the material
is parallel or perpendicular to the material axis of
symmetry.
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The method of potential function is a powerful tool to
study three-dimensional wave propagations in solids, ana-
lytically. So far, a few sets of complete potential functions
have been introduced to uncouple the system of equations
of equilibrium, equations of motion or equations of motion
coupled with heat transfer equation in transversely isotro-
pic materials (Lekhnitskii, 1940; Hu, 1953; Nowacki, 1954;
Elliott, 1948; Lodge, 1955; Kellogg, 1953; Eskandari-Ghadi,
2005; Eskandari-Ghadi et al., 2009; Eskandari-Ghadi et al.,
2010). In addition, there are some researches containing
the response of transversely isotropic materials as Green’s
functions or to some loads other than point load in either
elastostatic or elastodinamic cases and to forced vibrations
of some rigid plates, where the method of potential func-
tions have been utilized (Pan and Chou, 1976; Pan and
Chou, 1979; Rahimian et al., 2007; Eskandari-Ghadi et al.,
2008) Eskandari-Ghadi et al., 2011; Eskandari-Ghadi
et al., 2012; (Eskandari-Ghadi and Ardeshir-Behrestaghi,
2010).

On the other hand, because of sedimentary process and
confining pressure, the properties of soil vary in depth.
Thus, assuming constant depth-profile properties for soil
deposits and some types of rocks may result in a rather
poor approximation compare to the real conditions. Thus,
studying wave propagation in inhomogeneous media is a
need in soil-structure-interaction point of view. Function-
ally graded materials (FGMs) having the desired variation
of material properties in spatial directions are widely used
in different applications such as aerospace and automobile
industries (Eskandari and Shodja, 2010). Some attempts
have been made for this class of engineering problems in
which several kind of variations such as linear variation
(Gibson Soil) and exponential variation have been consid-
ered (Wang et al., 2006). However, in between different
kind of in-homogeneity, the exponential variation of the
elasticity tensor is widely used for FGMs in the engineering
literature (Martin et al., 2002).

On the other hand, semi analytical/numerical method
such as boundary element method may be useful for deep
analysis of this media (Pan and Han, 2004). Displacement-
and stress-Greens functions are prerequisite for using BEM
in analyzing FGM media. There are a few researches, where
one may find the Green’s functions for either isotropic or
anisotropic FGMs in the elastostatic cases (Pak and Guzina,
1995; Martin et al., 2002; Wang et al., 2003; Chan et al.,
2004; Wang et al., 2006; Kashtalyan and Rushchitsky,
2009; Eskandari and Shodja, 2010). For example, (Pak
and Guzina, 1995), by extending a previously reported po-
tential functions for homogeneous isotropic material, ana-
lyzed a heterogeneous isotropic media in frequency
domain, and (Kashtalyan and Rushchitsky, 2009), with
the aid of the method of displacement potential functions,
have solved equilibrium equation in non-homogenous
media in the case of elastostatics.

In this paper, a vertically graded transversely isotropic
half-space in the form of exponential function is consid-
ered as the domain of interest of this study. The half-space
is considered in such a way that its material axis of
symmetry to be depth-wise at any point. An arbitrary
time-harmonic patch load is assumed to be applied at
an arbitrary depth from the surface of the half-space.
By extending Eskandari-Ghadi’s potential functions
(Eskandari-Ghadi, 2005) for this class of functionally graded
transversely isotropic materials, a new set of potential
functions containing two scalar potential functions is
introduced to uncouple the equations of motion. The
governing equations for the potential functions are in the
form of a second order and a forth order non-constant
coefficients partial differential equation, whose solutions
are determined by virtue of Fourier series and Hankel
integral transforms. Although the ordinary differential
equations governing one of the potential functions is not
with constant coefficients, its solution is given in closed
form. The displacements and stresses are introduced in

Notation

c0 ij lasticity constants at z=0
s depth of point load
Cd dilatational wave speed
Cs equivoluminal wave speed
E Young’s moduli in the plane of transverse isot-

ropy
E
0

Young’s moduli in the direction normal to the
plane of transverse isotropy

G shear modulus in the plane normal to the axis
of symmetry

G
0

shear modulus in planes normal to the plane of
transverse isotropy

Jm Bessel function of the first kind and mth order
P(r, h) time-harmonic surface force component in r-

direction
Q(r, h) time-harmonic surface force component in h-

direction

R(r, h) time-harmonic surface force component in z-
direction

r radial coordinate
t time variable
ui displacement component in i direction (i = r, h,

z)
z vertical coordinate
d(r) Dirac-delta function
eij (i, i = r, h, z) strain components
b non-homogeneity parameter
h angular coordinate
k1; k2, k3 radicals appearing in general solutions
n Hankel’s parameter
q0 material density
rij (i, j = r, h, z) stress tensor
x0 non-dimensional frequency
x angular frequency

276 M. Eskandari-Ghadi, A. Amiri-Hezaveh / Mechanics of Materials 68 (2014) 275–292



Download English Version:

https://daneshyari.com/en/article/802825

Download Persian Version:

https://daneshyari.com/article/802825

Daneshyari.com

https://daneshyari.com/en/article/802825
https://daneshyari.com/article/802825
https://daneshyari.com

