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a b s t r a c t

An ellipsoidal void model, which is based on a parallelogrammic void model, is proposed
for simulating ductile fracture behavior. It is used to analyze ductile fracture behavior in
three plastic deformation modes: plane strain tension, uniaxial tension, and simple shear.
The relationship between the fracture strain and the initial void volume fraction in uniaxial
tension calculated using the void model agrees with that calculated using a finite-element
void cell and agrees reasonably well with experimentally determined relationships in pre-
vious studies. For a specified initial void volume fraction, plane strain tension and simple
shear respectively have the smallest and largest nominal fracture strains of the three plas-
tic deformation modes.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ductile fracture, which occurs when a material is
subjected to a large plastic deformation, is problematic in
metal-forming processes. Consequently, it has been consid-
erably investigated (Dodd and Bai, 1987). Microscopically,
ductile fracture occurs through nucleation, growth, and
coalescence of voids. Modeling void growth has been inves-
tigated by the finite-element method, which revealed how
voids deform (Needleman, 1972; Tvergaard, 1981). How-
ever, void nucleation (Argon and Im, 1975; Goods and
Brown, 1979; Le Roy et al., 1981) and coalescence are insuf-
ficiently understood.

Several analytical studies have investigated void
coalescence on a microscopic level (Thomason, 1990;
Melander and Stahlberg, 1980; Koplik and Needleman,
1988; Pardoen and Hutchinson, 2000; Benzerga, 2002;
Ragab, 2004b; Bacha et al., 2008). Of these studies, the
series of studies by Thomason (1990) is the best known.
Although Thomason proposed three-dimensional void
models (Thomason, 1985a,b), two-dimensional void models

(Thomason, 1968a, 1981, 1982) are still beneficial. Two-
dimensional modeling of internal necking of voids
(Thomason, 1968a) is particularly effective since it employs
a simple void model and is based on upper-bound theory
(Avitzur, 1968), which is a method for analyzing metal-
forming processes. The relationship between the fracture
strain and the void volume fraction calculated using this
void model agrees reasonably well with that obtained
experimentally by Edelson and Baldwin (1962). Recently,
there have been many experimental studies of void coales-
cence on a microscopic level (Worswick et al., 2001; Tinet
et al., 2004; Narayanasamy and Narayanan, 2006; Weck
and Wilkinson, 2008; Weck et al., 2008).

The Thomason model (Thomason, 1968a) and the
Melander and Stahlberg model (Melander and Stahlberg,
1980) (which was derived from the Thomason model)
assume that voids are rectangular and that the longitudinal
direction of a void coincides with the direction of maxi-
mum principal stress. In other words, these models assume
that the principal strain direction remains constant during
plastic deformation. However, these models cannot be
utilized to simulate metal-forming processes since the
principal strain direction varies during plastic deformation
in these processes.
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In a previous study (Komori, 1999), we proposed a
void model based on these models that can be utilized
to simulate metal-forming processes. It assumes that
voids are parallelograms and that the longitudinal direc-
tion of a void differs from the direction of maximum
principal stress. In other words, it assumes that the
direction of principal strain varies during plastic defor-
mation. It is identical to the Melander and Stahlberg
model in uniaxial tension. Hence, in uniaxial tension,
the relationship between the fracture strain and the void
volume fraction calculated using our void model is iden-
tical to that calculated using the Melander and Stahlberg
model, while it is close to that calculated using the Tho-
mason model.

Our void model (Komori, 1999), the Thomason model
(Thomason, 1968a), and the Melander and Stahlberg
model (Melander and Stahlberg, 1980) all suffer from
two problems. The first problem is that the fracture
strain is calculated to be zero when the void volume
fraction of the material exceeds 10%. However, the frac-
ture strain obtained experimentally by Edelson and Bald-
win is nonzero even when the void volume fraction of
the material exceeds 20%. The second problem is that
the calculated relationship between the fracture strain
and the void volume fraction has not been demonstrated
for plastic deformation modes except for uniaxial
tension.

To overcome these problems, this study proposes an
ellipsoidal void model based on our earlier parallelogram-
mic void model for simulating ductile fracture behavior. It
is used to analyze ductile fracture behavior in three plastic

deformation modes: plane strain tension, uniaxial tension,
and simple shear.

From a macroscopic point of view, ductile fracture is
highly dependent on the stress triaxiality of a material
(Bridgman, 1952), which is zero in simple shear. Hence, it
is not easy to predict ductile fracture in simple shear from
a macroscopic point of view (Pardoen, 2006; Barsoum and
Faleskog, 2007a,b). It is thus particularly valuable to obtain
the relationship between the fracture strain and the void
volume fraction for simple shear.

2. Analysis method

2.1. Overview of whole analysis

Fig. 1 shows an overview of the whole analysis
procedure at each time step. Macroscopic analysis and
microscopic analysis are performed alternately (Zhang
and Niemi, 1995; Zhang et al., 2000; Komori, 2006a,b,
2008). First, in macroscopic analysis, the deformation of
the material is analyzed by the conventional rigid–plastic
finite-element method. The displacement gradient rate
and the void volume fraction rate of the material
calculated by macroscopic analysis are utilized in the
subsequent microscopic analysis. Next, in microscopic
analysis, fracture of the material is evaluated by
our void model. The microscopic analysis determines
whether the material fractures and this information is
utilized in the macroscopic analysis of the next time
step.

Nomenclature

a, b major and minor diameters of void, respectively
C right Cauchy–Green deformation tensor
E ratio of energy dissipation rate of internal neck-

ing to energy dissipation rate of homogeneous
deformation

f ; _f void volume fraction and fraction rate of mate-
rial, respectively

f0 initial void volume fraction
k shearing yield stress of material
2l1, 2l2 lengths of velocity discontinuity lines
L, L0 rectangle dimensions in x0- and y0-directions,

respectively
n strain hardening exponent
p distance between two neighboring voids
R orthogonal rotation tensor
r0 radius of cylindrical, spherical, or toroidal void
S0, Sf initial and final cross-sectional areas, respec-

tively
u, v, w displacements in x- or r-, y-, and z-directions,

respectively
u⁄, v⁄, w⁄ displacements in x-, y-, and z-directions, respec-

tively
U right stretch tensor
u0, v0 material velocities in x0- and y0-directions,

respectively
V, V0 volumes of material and matrix, respectively

Dv1, Dv2 velocity discontinuities
xv, yv x- and y-coordinates of neighboring void,

respectively
_e equivalent strain rate
ef logarithmic fracture strain
eM strain of matrix
h1, h2 angles between maximum principal stress and

velocity discontinuity lines
kmax; kmin maximum and minimum principal values of C,

respectively
r equivalent stress
r⁄ imposed hydrostatic stress
rM tensile yield stress of matrix
/ angle between line connecting two neighboring

voids before deformation and x-axis
/a angle between direction of major diameter of

void a and x-axis
/max angle between maximum principal direction of

C and x-axis
/R angle of rotation due to R
U, U0 original and approximate Gurson yield func-

tions, respectively
W, W0 original and approximate Gurson–Tvergaard

yield functions, respectively
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