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a b s t r a c t

Point estimate methods (PEMs) are widely applied to approximately estimate the moments and

uncertainty of a random output variable in reliability evaluation and other engineering applications due

to its computational efficiency and satisfactory accuracy. However, as any numerical approximation

method, PEMs have their own limitations and should be used with caution. Unfortunately, although a

lot of papers on point estimate methods have been published so far, almost none of them mentioned

the limitations and restrictions of PEMs. In this paper, the restrictions of PEMs are theoretically

analyzed and discussed with illustrative examples. A remedy for the restrictions is presented.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty exists inherently in reliability evaluation, risk
assessment and many other engineering applications due to
randomness of variables, inaccuracy of models, or lack of knowl-
edge of objects under study [1–3]. To make a better decision in a
reliability strategy or an actual application, the uncertainty of the
output variable Z that is a function F of input random variables
X1,X2,y,Xn needs to be quantified. In real life, the function could
be very complicated and even may not have an analytical
expression [1–3]. In this case, analytically calculating the uncer-
tainty of the output variable from input variables is a challenge.

To tackle this issue, point estimate methods were introduced
by Rosenblueth in his seminal papers for the first time [4,5] and
then improved subsequently by other researchers [6–14]. The
basic idea of PEMs to approximate the mean of the output
variable Z is to compute a weighted sum of values of the function
F evaluated in some deliberately chosen points. The choice of
evaluation points is typically based on some statistical features of
the input random variables, such as mean, variance, skewness,
kurtosis, etc. Approximation of high-order raw moments works in
a similar fashion. Once the raw moments of an output variable are
estimated, the probability density function (PDF) of the output
variable can be reconstructed approximately by employing Edge-
worth expansion if necessary. Because of their high efficiency and
low requirement for knowledge of input variables, PEMs have
gained popularity in reliability evaluation and other engineering

areas, and are widely applied to solve practical problems, such as
applications in geotechnical engineering [15,16], electric power
engineering [17–21], etc.

Although the aforementioned works [4–14] in PEMs share the
same basic idea, they differ in the strategy of choosing evaluation
points. In Rosenblueth’s original point estimation scheme, the
corner points of an n-dimensional hypercube around the mean
vector of input variables are selected, which results in 2n evalua-
tions of the function, where n is the number of input variables.
The disadvantage of this scheme is that when n is large, it
becomes very inefficient or even infeasible. For example, for
n¼20, it requires more than one million of evaluations, which
would be unacceptable in many actual applications. To improve
the applicability of PEMs, instead of evaluating the function at
each corner point, Lind [6] chose points near the center of each
face of the hypercube. This gives a scheme with n(nþ1)/2 points.
Although the number of evaluation points is significantly reduced,
it is still quadratic to the number of input variables. Schemes with
the number of evaluation points with a linear relation to the
number of input variables emerged since late 1980s. Harr [8]
proposed a 2n scheme based on the eigen-decomposition of the
correlation matrix of input variables. The requirement of correla-
tion matrix restricts the applicability of the scheme since in many
applications it is very difficult to obtain the correlation matrix
with a reasonable precision. In contrast, the approach developed
by Hong [11] is directly based on Taylor expansion and does not
require any information of input variables beyond the first four
statistical moments. Also, this approach takes into account the
input variables’ moments higher than the 2nd moment for the
first time. Hong showed that this approach can make the estima-
tion more accurate and at the same time uses only 2nþ1
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evaluation points. An excellent review of various popular point
estimate schemes can be found in [22]. It should be pointed out
that Hong [11] provided a firm derivation of PEMs based on
Taylor series and other methods including Rosenblueth’s original
scheme can be derived from Hong’s expression.

However, PEMs should be used with caution due to several
inherent limitations. Unfortunately, researchers in the engineer-
ing area seem unaware of the limitations when applying PEMs to
probabilistic engineering problems. Even developers of point
estimate schemes did not mention assumptions and restrictions
of PEMs. When they compared different point estimate schemes,
their focus was placed on computational efficiency, empirical
accuracy, treatment of bounded variables and correlations
between variables [4–14,22].

In fact, PEMs do not directly work well for some types of
functions. The objective of this paper is to present the restrictions
of PEMs, discuss reasons, demonstrate illustrative examples, and
propose a remedy for the restrictions. In practice, because of
difficulty in obtaining accurate estimation of high order moments
and consideration on computational burdens, a 2n scheme or 3n

scheme, which can offers sufficient accuracy, is preferred. Since
all PEMs are based on the same assumptions and have similar
mathematical expressions and features, the 2nþ1 scheme is used
as an example in the discussions of the paper.

2. Derivation of 2nþ1 PEM

It is necessary to briefly give a strict derivation process of
PEMs so that the assumptions and features as sources of the
restrictions can be manifested. In our view, the related papers
except Hong’s paper did not explicitly touch the mathematical
essence of PEMs, which is the concept of Taylor series, although
other PEMs implicitly used this concept as they can be re-derived
from Taylor series based derivation. Using a similar idea in Hong’s
2nþ1 scheme on a single variable case [11], the derivation of
2nþ1 scheme of PEMs on multiple variables is presented first as
follows in order to demonstrate the assumptions and limitations
of PEMs.

Let J(x) be the joint distribution function of random variable
vector X¼(X1,X2,y,Xn). The kth raw moment of Z¼F(X) is the
expectation of Zk with respect toJ(x)

E Zk
� �

�

Z
D

Fk
ðxÞdJðxÞ ð1Þ

The integral is Remann–Stieltjes integral and D is the domain
of X. Mathematically, all of PEMs are to approximate this integral
using a weighted sum of function values which are evaluated at a
few selected points of input variable vector X. They differ in the
way of how to select the points and weighting factors.

Assuming X1,X2,y,Xn are statistically independent and
expanding Z¼F(X) by Taylor series at the point (m1,m2,y,mn)
where mt(t¼1,2,y,n) is the mean of variable Xt, we have
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converges to F(X) for each value of X, the mean mZ of Z can be
expressed by

mZ ¼ E FðXð ÞÞ ¼

Z
D

FðXÞdJðXÞ ð3Þ

¼
X1

m1 ¼ 0

� � �
X1

mn ¼ 0

l1;m1
sm1

1 � � �ln,mns
mn
n

m1! � � �mn!

@m1þ���þmn F

@xm1

1 � � � @xmn
n

 !
m1,. . .,mn

� �
ð4Þ

where st is the standard deviation of Xt and lt,j � E Xt�mt

� �j
� �

=sj
t .

Let function ht(x) of Xt be F(m1,y,mt�1,x,mtþ1,y,mn) which
means that only Xt is the changeable variable while the values
of other variables are fixed at mi(iat). Applying the concept of
Taylor series again, we obtain

ht xð Þ � ht mt
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where hðiÞt ¼ @iF=@xi
t

� �
. Let xt,k¼mtþstxt,k,(k¼1,2,3) where xt,1 and

xt,2 are the constants to be determined and xt,3 is set to zero.
A direct result is xt,3¼mt. Let ot,k be the weighting factor at point
(m1,m2,...,xt,k,y,mn). Define
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It is noted that the series of S and the series of mZ are in such a
similar form that each term containing the function or the
product of partial derivative and standard deviation is corre-
sponding to each other in the two series. This enables us to
approximate mZ using S by matching up the first several terms
(upto a degree of 4) of the two series. This is achieved by setting

Xn
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� �
¼ 1 ð8Þ

ot,1x
i
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t,2 ¼ lt,i, i¼ 1,2,3,4, t¼ 1,2,. . .,n ð9Þ

It can be assumed that the weighting factors are evenly
distributed among all the variables Xt [11], namely,

ot,1þot,2þot,3 ¼
1

n
, t¼ 1,2,. . .,n ð10Þ

By solving the 5n simultaneous Eqs. in (9) and (10) for random
variable Xt (t¼1,2,y,n), we obtain the following standard loca-
tions for each variable
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and their corresponding weighting factors
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By defining
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it follows that
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