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a b s t r a c t

Theoretical results for the convergence of statistical moments in numerical quadrature based

polynomial chaos computational uncertainty quantification are presented in this work. This is

accomplished by considering the computation of the moments through a direct numerical quadrature

method, which is shown to be equivalent to stochastic collocation. For problems which involve output

variables which have a polynomial dependence on the random input variables, lower bound

expressions are derived for the number of quadrature points required for convergence of arbitrary

order moments. In addition, an error expression is derived for when this lower bound is used for

problems which have a higher degree of continuity than what was assumed when the bounds are

computed. The theoretical results are demonstrated through a simple random algebraic problem and a

nonlinear plate problem. The results presented in this work provide further insight into the widely used

polynomial chaos expansion method of uncertainty quantification along with presenting simple

expressions which can be used for uncertainty quantification code verification.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The process of uncertainty quantification (UQ) results in a
measure of the effect of uncertainty in a system input on the
system response quantities of interest. In the design of engineer-
ing systems, the information produced from uncertainty quanti-
fication can be used as a tool for enabling quantitative risk
analysis [1]. When the so-called system involves a computational
model, this is accomplished through the propagation of model
input uncertainty through the computational model to determine
the statistics of the model outputs. These statistics can then be
used to determine the probability of undesirable events (outputs)
which in turn can be used to give a measure of the risk involved in
a given ‘‘activity’’. Several examples of the application of uncer-
tainty quantification for problems (activities) of interest to the
engineering community are discussed in Refs. [2–4].

When discussing types of model input uncertainty, the classi-
fication provided in Ref. [5] is often used. In this classification
three types of uncertainty are recognized: aleatory or irreducible
uncertainty; epistemic uncertainty; and uncertainty due to
human error. When considering computational uncertainty the
first two are relevant [6,7] and relate to a lack of knowledge in the
true physics of the problem (epistemic) and randomness in a

system (model) parameters (aleatory). Aleatory uncertainty can
normally be put in the framework of a probabilistic description
while epistemic uncertainty is often difficult to quantify. In this
paper we will deal only with aleatory uncertainty.

Computational uncertainty quantification methods can be
intrusive or non-intrusive. Most intrusive methods can be
thought of as weighted-residual methods whereby the (random)
response variables in a differential equation are expanded in a
finite series of basis functions (functions of the random input
variables) and then the error in the approximation is forced to be
orthogonal to a ‘‘test’’ functional space (from considerations of
error minimization). This results in a set of deterministic (differ-
ential) equations for the coefficients in the expansion. On the
other hand in non-intrusive methods, deterministic simulation
tools can be treated as ‘‘black boxes’’ and hence simulation code
modification is not required. A typical non-intrusive uncertainty
quantification scheme consists of, similar to intrusive methods,
expanding the random response variable in a finite series of basis
functions whose coefficients are then computed by sampling the
black box simulation and then using spectral projection or linear
regression [8]. For either method, intrusive or non-intrusive, once
the coefficients in the expansion are found they can be used to
reconstruct the response which then can be used to determine
statistical quantities of interest.

The most common functional spaces used in the expansions
correspond to what is called generalized polynomial chaos [9–14]
and can be generated using the Wiener–Askey scheme. The first
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instance of this was introduced by Wiener [15] as the span of the
Hermite polynomial functionals of a Gaussian random process
and is often called Wiener’s polynomial chaos or Homogeneous
chaos. Depending on the type of continuous random variable, the
Wiener–Askey scheme generates polynomials which are ortho-
gonal to the measure of the random variable.

When using uncertainty quantification analysis for an engi-
neering system, an important objective should be the determina-
tion of a set of design criteria which can be used in a probabilistic
context so that a reliability analysis is permitted [16–18]. In this
context, the statistical moments (including mean, variance, skew-
ness, kurtosis) of the system response can provide bounds about
its expected range along with giving meaningful information
about the reliability of the system with random inputs. The
moments can also be used together with some expansion, such
as the Edgeworth expansion [19], to approximate the probability
distribution function of the response process. In order for the
uncertainty quantification analysis to provide useful information
about system reliability, the moments of interest should be
estimated accurately to within a user-defined tolerance. Some
key questions which should then be asked are: (a) what smart

choices can the analyst make in an a priori sense to ensure that

moments up to a desired order are estimated accurately? and
(b) how many samples are necessary for accurate uncertainty

quantification, including asymptotic convergence in (point estimates

of) the probability density of the system output and convergence in

moments up to an arbitrarily high order? In other words (regarding
question (a)), if something is known about the functional depen-
dence of the random response on the random input, can the
minimum number of samples in a non-intrusive uncertainty
quantification analysis be chosen ahead of time such that all
moments up to a given order are guaranteed to be converged? It
appears that convergence in probability density functions of
system outputs (regarding question (b)) is dependent on the type
of reconstruction approach used (e.g. Edgeworth series, Max-
imum Entropy approach) to determine the probability density
function based on the underlying moments (up to a known order).

In this paper we will present analysis which addresses ques-
tion (a). Specifically, we will provide theoretical results on the
necessary conditions for the number of samples needed in a non-
intrusive polynomial chaos expansion (PCE) to provide statistical
moments of a response variable within a given error bound. For
random response variables which are given in terms of polyno-
mials of the random input variables, these conditions provide a
lower bound on the number of samples needed for an exact
evaluation of the statistical moments. In addition an expression is
developed for the error incurred if this lower bound is used for a
problem which has a higher degree of continuity than which was
assumed when the bound was computed. In order to produce
these results, we will develop the non-intrusive uncertainty
quantification process directly in terms of numerical quadrature
of the statistical moments [20], the result of which will be shown
to be equivalent to stochastic collocation [8]. In addition to aiding
in the development of the theoretical results, the authors feel that
presenting the computation of statistical moments from a direct
quadrature perspective presents a simple, straightforward way of
introducing the topic. The theoretical results on the number of
samples needed for statistical moment convergence will be
demonstrated using a simple numerical example. It may be noted
that in our analysis (regarding determination of minimum num-
ber of samples needed for convergence of moments up to a
desired order), we assume that the exact functional dependence
of the system response on the system input is known and can be
represented via polynomials. Although this may not often be the
case, the present analysis serves as an important tool for code
verification and validation. As this work is particularly focused on

identifying the conditions for accurate estimation of moments (of
arbitrary order) using quadrature, it could complement many
methods in reliability analysis that involve moment dependent
(e.g. variance based) or moment independent (e.g. entire output
distribution) uncertainty measures [17,18,13,14].

2. Theory

In this section we will present the salient theoretical details
which are needed to derive the theoretical results for the PCE
method. Further details on the generalized PCE can be found, for
example, in Refs [3,10].

2.1. A direct quadrature view of the computation of moments of

random response

The nth moment of a random variable u which is a function of
N independent random variables, denoted here as nðyÞ ¼ fx1ðyÞ,
x2ðyÞ, . . . ,xNðyÞg, is given by the expression

/unðnÞS¼
Z
O

uðnðyÞÞnpðnðyÞÞ dnðyÞ, ð1Þ

where y is a random event and O and pðnðyÞÞ denote the support
and probability density (respectively) corresponding to n.

The basis of the direct quadrature computation is to use
numerical (Gauss) quadrature to compute the integral in Eq. (1).
Using Gauss quadrature a one-dimensional integral of the formZ b

a
f ðxÞwðxÞ dx ð2Þ

is approximated with the M-point quadrature formula given byZ b

a
f ðxÞwðxÞ dx�

XM
i ¼ 1

f ðxiÞ ~wi: ð3Þ

The evaluation point xi corresponds to the ith root of the
orthogonal polynomials with the weighting function w(x). Com-
mon weighting functions (with the corresponding support)
include 1 (Gauss–Legendre), 1=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2Þ

p
(Gauss–Chebyshev) and

e�x2
(Gauss–Hermite). Higher dimensional integrals can be com-

puted using tensor products of one-dimensional formulas or, if
the dimension is large, a sparse grid technique such as Smolyak
quadrature [21]. If f(x) is continuous on ½a,b�, then it can be shown
[22] that the approximations in Eq. (3) converge to the integral
as M-1.

For a function f ðxÞAC2M
½a,b� the error in Eq. (3) is given by

E¼
f 2M
ðzÞ

ð2MÞ!
/FM ,FMS, ð4Þ

where f 2M
ðzÞ corresponds to the 2M th derivative of f and

aozob. Also /FM ,FMS corresponds to the inner product of
the Mth-order polynomial which is orthogonal to the weighting
function w(x) in Eq. (3). From Eq. (4) it can be shown that M point
Gauss quadrature is exact for a polynomial of degree at most
2M�1.

For clarity of presentation we will now restrict ourself to N¼1,
i.e. a one-dimensional space of a single random variable (x).
Additional consideration of results for higher dimensions will be
given where necessary. For one dimension, Eq. (1) can now be
approximated using numerical quadrature as

/unðxÞS¼
Z b

a
uðxðyÞÞnpðxðyÞÞ dxðyÞ

�
XM
i ¼ 1

uðxiÞ
n ~wi, ð5Þ
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