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a b s t r a c t

Dynamic flowgraph methodology (DFM) is a computationally challenging approach to the reliability

analysis of dynamic systems with feedback loops. To improve the computational efficiency of DFM

modelling, we propose a new approach, based on binary decision diagrams (BDDs), to solving DFM

models. The objective of DFM analysis is to identify the root causes of a postulated top event. The result

is a set of prime implicants that represent system faults resulting from diverse combinations of

software logic errors, hardware failures, human errors and adverse environmental conditions. Two

approaches to solving prime implicants have been implemented in software called YADRAT. The first

approach is based on meta-products, and the second on zero-suppressed BDDs (ZBDD). Both

approaches have been used previously in fault tree analysis. In this work, the ideas of prime implicant

computations are adapted to a dynamic reliability analysis approach combined with multi-valued logic.

The computational efforts required for the two approaches are compared by analysing three example

systems. The results of the comparison show that BDDs are applicable in DFM computation and that in

particular the ZBDD-based approach can solve moderately sized DFM models in a reasonable time.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most widely used methodologies for reliability
modelling, particularly in the nuclear domain, has been the static
event tree/fault tree (ET/FT) approach. The inability of the ET/FT
approach to capture time-dependent dynamic behaviours has
made it somewhat impractical in assessing the reliability of
dynamic systems. Dynamic methodologies can provide a more
accurate representation of probabilistic system evolution in time
than the ET/FT approach.

Numerous dynamic reliability approaches are available, such
as dynamic flowgraph methodology (DFM) [1–3], Markov/cell-to-
cell mapping technique (CCMT) [4,5], Petri Nets [6], Bayesian
approaches [7–9], test-based approaches [10], Boolean logic
driven Markov process (BDMP) [11], and black box approaches
[12,13]. Some of these approaches are reviewed in, for example,
[10,14,15] and Markov CCMT were ranked in [10] as the two top
dynamic reliability modelling approaches, with the most positive
features and fewest negative features. The Markov/CCMT and the
DFM approaches are not compensatory methods; rather they
should be used in a complementary fashion. It is suggested in
[4] that DFM should be used to identify possible failure sequences
or initiating events that lead to a specified event. In contrast,

Markov/CCMT should be used to guarantee the completeness and
verification of the quantification of the failure sequences that may
require more detailed modelling.

DFM is an approach to modelling and analysing the behaviour
of dynamic systems for reliability assessment. DFM can be used to
identify how certain top events (typically a system failure) may
occur in a system. The result is a set of prime implicants that
represents system faults resulting from diverse combinations of
software logic errors, hardware failures and adverse environmen-
tal conditions. A DFM analysis corresponds to a minimal cut set
search of a fault tree and prime implicants are similar to the
minimal cut sets of fault tree analysis.

The modelling approach used by DFM is promising, due to the
simplicity of its formalism, the possibility of modelling time
dependencies and loop dependencies and the possibility of
modelling multi-state logic and incoherent reliability structures.
The main drawback and limitation of DFM is scalability. Realistic
modelling easily causes a combinatorial explosion as the number
of states in the decision tables increases.

The main of objective of this paper is to present a new approach to
solving DFM models with the aim of improving scalability. The
novelty of the approach is that it employs binary decision diagrams
(BDD) [16,17] to represent a DFM model. The BDD was chosen as the
underlying data structure, because BDDs are state-of-the-art data
structures that have been used in several applications, and several
efficient open-source BDD packages are available.
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The two different BDD-based approaches have been imple-
mented for the exact computation of prime implicants in software
called YADRAT. The first approach is based on meta-products [18]
and the second on zero-suppressed BDD (ZBDD) [19]. Both
approaches have been used previously in static failure tree
analysis [20,21]. In this work, the ideas for prime implicant
computation are adapted to a dynamic reliability analysis
approach combined with the multi-valued logic of DFM.

The remainder of this paper is structured as follows: Section 2
introduces binary decision diagrams and the dynamic flowgraph
methodology. Section 3 reviews related work. Section 4 discusses
the algorithms in YADRAT. Section 5 compares two BDD-based
algorithms and, also, compares the YADRAT with another DFM
software called DYMONDA [22]. The aim of the latter comparison
is not to compare computational efficiency but to demonstrate
that BDD-based approaches can be used to solve DFM models
correctly. Section 6 concludes the paper.

2. Preliminaries

2.1. Boolean algebra

A Boolean function of n variables is a function on Bn into B,
where B is the set f0,1g, n is a positive integer, and Bn denotes the
n-fold Cartesian product of the set B [23]. A literal is a Boolean
variable x or its complement x. A product term p is a single literal
or a logical product of two or more literals. Pn is the set of
products that can be built out of a set of variables fx1, . . . ,xng [18].

Let V be a set of Boolean variables. An assignment x is any
mapping from V to ½0,1�. An assignment satisfies a formula F if
x½F� ¼ 1, otherwise it falsifies F [20]. A logical function Gðx1, . . . ,xnÞ

implies a Boolean function Fðx1, . . . ,xnÞ if any assignment that
satisfies G also satisfies F. A prime implicant of a Boolean function
Fðx1, . . . ,xnÞ is a normal product term Gðx1, . . . ,xnÞ that implies F,
such that if any variable is removed from G, then the resulting
product term does not imply F.

A set of prime implicants that is logically equivalent to a
function is called cover [24]. In the scope of this paper two types
of covers are of interest: irredundant and complete. A set of
products P is a prime cover of a Boolean function F if it is made of
prime implicants of F. Cover P is irredundant if there is no proper
subset of P that is a prime cover of F. The complete cover includes
all the possible prime implicants of F.

2.2. Binary decision diagram

A binary decision diagram [16,17] is a data structure used to
represent Boolean functions. The BDD is based on the repeated
application of the classic Shannon expansion formula

F ¼ x � F9x ¼ 1þx � F9x ¼ 0 ð1Þ

A BDD is a rooted, directed acyclic graph consisting of decision
nodes with two edges the 1-edge and 0-edge, and two terminal
nodes the 1-terminal and the 0-terminal representing the Boolean
functions 0 and 1. A variable assignment for which the repre-
sented Boolean function is true is represented by a path from the
root node to the 1-terminal node.

An ordered binary decision diagram (OBDD) is a BDD with the
constraint that the input variables are ordered and every decision
node to terminal node path in the OBDD visits the input variables
in ascending order. By reducing the OBDD, the reduced ordered
binary decision diagram (ROBDD) is obtained. Bryant [16] demon-
strated how a BDD could be modified to an ROBDD to enable the
creation of a canonical representation a Boolean function. In the

rest of this paper, a BDD is understood to mean the reduced and
ordered form of a BDD.

The ite (If–Then–Else) connective is generally used for the
representation of Boolean functions as BDDs. The ite connective
can be used to implement all two-variable Boolean functions. It is
defined as follows:

iteðF,G,HÞ ¼ ðF � GÞþðF � HÞ ð2Þ

where F, G, and H are Boolean functions.
The performance of the ite connective can be improved by

introducing a computation table that maintains the results of
previous computations [16]. When the algorithm is used for two
nodes, first the computation table is checked. If the table contains
an entry of the computation then the result can be returned
immediately.

Another type of BDD is the zero-suppressed BDD (ZBDD) intro-
duced by Minato [19]. A ZBDD is a BDD with different semantics and
reduction rules. ZBDDs are more efficient than regular BDDs when
the Boolean function handled is very sparse, i.e. when a formula is
zero almost everywhere. Set-operations on ZBDDs are of polynomial
worst-case complexity, as for logical operations on BDDs. Basic
operations on ZBDDs are presented in [19].

The size of a BDD is heavily dependent on the chosen variable
order. Generally, there are two different approaches to determin-
ing the variable ordering used: static heuristics and dynamic
heuristics [25]. One of the most used heuristics is depth-first left-
most heuristic (DFLM). In DFLM, variables are numbered on the
basis of the depth-first left-most traversal of a formula. In
practice, DFLM heuristics gives rather good results compared
with other approaches suggested in the literature. However, some
questions have been raised regarding the goodness of the heur-
istics [26].

2.3. Dynamic flowgraph methodology

Dynamic flowgraph methodology is an approach to modelling
and analysing the behaviour of dynamic systems for reliability
assessment and verification [1]. In DFM models, the logic of the
system is expressed in terms of causal relationships between
physical variables and states of the system. The time aspects of
the system associated with, for example, the execution of control
commands or the dynamics of the process are represented as a
series of discrete state transitions and time delays. DFM can be
used to identify how certain postulated events may occur in a
system. DFM has been used to assess the reliability of nuclear
power plant control systems [27], space rockets [3] and chemical
batch processes [28].

DFM models are directed graphs that are analysed at discrete
time instances. A node represents a variable that can be in one of
a finite number of predefined states. The state of a node can
change at discrete time instances. The state of the node is
determined by the states of its input nodes at a single instance
of time and the time lag that specifies how many time instances it
takes for an input to affect the state of the present node. The state
of a node, as a function of the states of its input nodes, is
determined by a decision table. A decision table is an extension
of the truth table in which each variable can be represented with
any finite number of states.

A DFM model can be analysed in two different modes:
deductive and inductive. In inductive analysis, event sequences
are traced from causes to effects, corresponding to simulation of
the model. In deductive analysis, event sequences are traced
backwards from effects to causes. In this paper, only deductive
analysis is considered.

A deductive analysis begins with the identification of a certain
system condition of interest (a top event), corresponding typically
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