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The mobility of a mechanism is the number of degrees of freedom (DOF) with which it may
move. This notion is mathematically equivalent to the dimension of the solution set of the
kinematic loop equations for the mechanism. It is well known that the classical Grübler–
Kutzbach formulas for mobility can be wrong for special classes of mechanisms, and even more
refined treatments based on displacement groups fail to correctly predict the mobility of so-
called “paradoxical” mechanisms. This article discusses how recent results from numerical
algebraic geometry can be applied to the question of mechanism mobility. In particular, given
an assembly configuration of a mechanism and its loop equations, a local dimension test places
bounds on the mobility of the associated assembly mode. A publicly available software code
makes the idea easy to apply in the kinematics domain.

© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

The most basic property of a mechanism is itsmobility, that is, its number of degrees of freedom (DOFs). One may also speak of
themobility of a family of mechanisms: for example, onemay say that planar four-bar linkages havemobility one. Such statements
are properly understood to mean that almost all of the mechanisms in the family have the stated mobility, although there may be
exceptions. A classical example is the family of 4R spatial single-loop mechanisms. Four general R–R links cannot even be
assembled into a closed loop, yet planar, spherical, and Bennett four-bars all assemble with mobility one. (Delassus [7] showed
that there are no other moveable four-bars.) Another notable example is the family of Stewart–Gough parallel-link (6SPU) robots,
which when the leg lengths are held fixed may be considered as 6SU mechanisms. Most 6SU mechanisms are structures, that is,
they have mobility zero. They can be assembled in a finite number of configurations (at most 40) and are immobile in each of
these. Nevertheless, exceptional cases exist of 6SU mechanisms that have mobility one, specifically the architecturally singular
Stewart–Gough platforms as classified by Karger [15] and a moveable platform found by Geiss and Schreyer [8] that is not
architecturally singular. The mobilities of many families of mechanisms, particularly those described by just a list of the number of
links and the kind of joints between them, submit to simple formulas, such as the Grübler–Kutzbach formulas. In contrast, those
families whose description includes extra geometric constraints, such as parallel or perpendicular joint axes or particular
combinations of link lengths, often require a more detailed analysis.
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The situation is even more complicated than just indicated, for some mechanisms have assembly modes of different mobility.
The existence of such mechanisms forces one to speak of the mobility of each assembly mode rather than the mobility of the
mechanism. It may even happen that two assembly modes of different mobility happen to meet, in which case the mobility of the
mechanism can change at a point of intersection. Mechanisms with this property are said to be kinematotropic [26].

Kinematicians also speak of “finite mobility” and “infinitesimal mobility.” An infinitesimal degree of freedom corresponds to a
direction of motion that exists to first or higher differential order but does not extend to a finite motion. As we shall discuss, these
degrees of freedom are intimately connected to the concept of roots that have multiplicity greater than one. All degrees of
freedom, finite and infinitesimal, lie in the null-space of the Jacobian matrix for the loop equations. This article describes an
extension of the Jacobian matrix, called a Macaulay matrix, which includes higher order terms that can be used to distinguish
between finite and infinitesimal directions, thus arriving at the finitemobility of themechanism. Themethodology involved comes
from work in numerical algebraic geometry, where the Macaulay matrix is central to a local dimension test that is used to sort
solution points found by numerical continuation [1].

In short, the contribution of this article is to show how the local dimension test from numerical algebraic geometry applies to
determining the mobility of an assembly mode of a mechanism. We describe an algorithm whose inputs are: (1) a mechanism as
defined by its loop equations, (2) an assembly configuration of the mechanism, and (3) an upper limit on the order of the analysis.
The output is a determination of the local mobility up to the given order.We show how themethod can often be applied to awhole
mechanism family. Care is taken to clarify the mathematical meaning of the computed results.

The paper begins with a short review ofmobility analysis as currently conducted in the kinematics community.We then review
Macaulay matrices and the local dimension test based on them. This leads to a new approach to computing mobility, which we
illustrate on several examples.

2. Mobility analysis

To place the current work in context, we begin with a brief review of existing methods for determining the mobility of
mechanisms and mechanism families. A more detailed review of the field is available in [9].

The idea that underlies formulas for calculating mobility is basically a count of the number of variables and the number of
constraint equations, the latter being the loop closure equations for a mechanism. The difference between these is a first guess at
the mobility of the mechanism, as each (scalar) loop equation has the potential to reduce the mobility by one. However, this guess
is only correct if each of the equations places an independent constraint on themotion. The question of independence is thus at the
heart of the matter.

The need for a more refined approach than counting variables and equations is immediately apparent in the kinematics
context. Consider a rigid body in three-space. Its location is described by a position and orientation, say p;Rð Þ∈SE 3ð Þ = R3 × SO 3ð Þ.
Here, SO(3) is the set of 3×3 rotation matrices given by

SO 3ð Þ = R ∈ R3×3
���RTR = I;

���R��� = 1
n o

: ð1Þ

It is well-known that dim SO(3)=3, but this is not immediately apparent from a count of variables and equations, as detailed
next.

Example 2.1 (SO(3)). Matrix R in Eq. (1) has nine entries. Due to symmetry, the matrix equation RT R= I is equivalent to just six
scalar equations, so with the final equation |R|=1, there are a total of seven. If the seven equations were independent, one would
have that SO(3) is two dimensional (9−7=2), whereas it is known to be three dimensional. The first six equations determine two
sets of dimension three, the set of rotations having |R|=1 and the set of mirror-image rotations having |R|=−1. Thus the final
equation, |R|=1, does not reduce the dimension of the set; instead, it picks out the rotations and discards their mirror images.

The simplestmobility formulas,whichwe refer to asGrübler–Kutzbach formulas [10,16], account for the dimension of the ambient
motion space of the links. A free-floating rigid body in three-space has six degrees of freedom, the dimension of SE(3). Thus,D = 6 is
the ambient dimension for spatial mechanisms. But for planar or spherical mechanisms, the ambient dimension is D = 3 being the
dimensionofR2 × SO 2ð Þ and SO(3), respectively.Declaringone linkasafixedground link,wehave that amechanismbuiltwithN links
has D N−1ð Þ degrees of freedom before connecting the links with joints. Suppose that a two-link mechanism with a single joint of a
certain type (e.g., revolute or prismatic) hasF degrees of freedom. This implies that the joint removes C = D−F degrees of freedom,
and C is called the degree of constraint of the joint. The Grübler–Kutzbach formulas assume that such a joint always removes C
freedoms no matter where it is placed in a multi-link mechanism so that the resulting mobility is:

DOF = D N−1ð Þ−∑
j∈J

Cj = ∑
j∈J

F j−DL; ð2Þ

where J is the set of joints, Cj is the number of constraints imposed by joint j, F j is the number of freedoms allowed by joint j, and L
is the number of loop closures. Variants of the formulas derive from topological relations between the number of links, joints, and
loops. The degrees of freedom of the basic “lower-order pair” joints and their kinematic symbols are given in Table 1.
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