Accepted Manuscript

Influence of backscattered neutrals on the grain size of magnetron-sputtered TaN thin films

Martin Rudolph, Daniel Lundin, Eddy Foy, Mathieu Debongnie, Marie-Christine Hugon, Tiberiu Minea

PII: S0040-6090(18)30348-1

DOI: doi:10.1016/j.tsf.2018.05.027

Reference: TSF 36670

To appear in: Thin Solid Films

Received date: 4 December 2017

Revised date: 4 May 2018 Accepted date: 11 May 2018

Please cite this article as: Martin Rudolph, Daniel Lundin, Eddy Foy, Mathieu Debongnie, Marie-Christine Hugon, Tiberiu Minea , Influence of backscattered neutrals on the grain size of magnetron-sputtered TaN thin films. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2017), doi:10.1016/j.tsf.2018.05.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of backscattered neutrals on the grain size of magnetron-sputtered TaN thin films

Martin Rudolph¹, Daniel Lundin¹, Eddy Foy², Mathieu Debongnie¹, Marie-Christine Hugon¹, Tiberiu Minea¹

¹ LPGP, UMR 8578 CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

² LAPA-IRAMAT, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gifsur-Yvette cedex, France

Abstract

A side effect of magnetron sputtering is the production of neutral working gas atoms backscattered from the cathode. Their influence on the morphology of sputter-deposited thin films, though, is usually neglected, which may not always be justified. In particular, for high-power impulse magnetron sputtering with its high negative cathode potential during the discharge pulse in combination with heavy metal targets, this effect can be important. In this work, we find experimentally that the grain size of magnetron-sputtered δ -TaN films is considerably reduced at high negative cathode potential and without the use of a substrate bias. For these deposition conditions, computer calculations show a high rate of backscattered neutrals with energies > 100 eV, which is only a factor of 10 to 20 lower than the total deposition rate of sputtered species. Such a significant fraction of energetic backscattered neutrals can readily impede grain growth by the incorporation of defects followed by renucleation. Thermalization of the energetic neutrals by the process gas is shown to be insufficient for typical magnetron operating pressures and cathode-substrate distances. The methodology presented here can be used to explain similar results of shrinking grains with increased negative cathode potential for other material systems.

Download English Version:

https://daneshyari.com/en/article/8032554

Download Persian Version:

https://daneshyari.com/article/8032554

<u>Daneshyari.com</u>