Accepted Manuscript

Influence of annealing atmosphere on crystallization of amorphous Si1-xGex thin film by Raman spectroscopy

thin films

Nobuaki Makino, Yukichi Shigeta

PII: S0040-6090(18)30294-3

DOI: doi:10.1016/j.tsf.2018.04.032

Reference: TSF 36630

To appear in: Thin Solid Films

Received date: 24 September 2017

Revised date: 4 April 2018 Accepted date: 21 April 2018

Please cite this article as: Nobuaki Makino, Yukichi Shigeta , Influence of annealing atmosphere on crystallization of amorphous Si1-xGex thin film by Raman spectroscopy. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2017), doi:10.1016/j.tsf.2018.04.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Influence of annealing atmosphere on crystallization of amorphous

Si_{1-x}Ge_x thin film by Raman spectroscopy

Nobuaki Makino 1, 2, Yukichi Shigeta 1, *

 1 Department of Nanosystem Science, Yokohama City University,

22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan

²Corporate Manufacturing Engineering Center, Toshiba Corporation,

33 Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017, Japan

ABSTRACT

The influence of annealing atmosphere on the crystallization behavior of amorphous structure

in a-Si_{1-x}Ge_x thin films was studied with Ra man spectroscopy. We annealed a-Si_{1-x}Ge_x (x = 0, 0.14,

0.27) thin films at 800 °C under various atmosphere and observed change in Raman spectra. We

confirmed that nitrogen-annealing atmosphere promotes crystallization of the a-Si film, however,

the crystallization was not promoted in the annealing under Ar atmosphere and in vacuum.

In the case of a-Si thin films containing Ge atoms, the crystallization in the a-Si_{1-x}Ge_x (x < 1

0.25) film was not promoted, although a-Si_{1-x}Ge_x ($x \ge 0.25$) film was crystalized when the annealing

in a N_2 atmosphere. However, crystallization of the a-Si_{1-x}Ge_x (x =0, 0.14, 0.27) were not promoted

by the annealing under Ar atmosphere or in vacuum. The distortion induced by the presence of Ge

atoms in the random-network of $Si_{1-x}Ge_x$, at a content below 25%, stabilizes the amorphous

structure and obstructs the crystallization even in the annealing under the N₂ atmosphere.

Keywords: amorphous structure; crystallization; Raman spectroscopy; silicon

*Corresponding author. *E-mail address:* shigeta@yokohama-cu.ac.jp

1

Download English Version:

https://daneshyari.com/en/article/8032558

Download Persian Version:

https://daneshyari.com/article/8032558

<u>Daneshyari.com</u>