Accepted Manuscript

Li2MoO4 coated Ni-rich cathode for all-solid-state batteries

thin subject to the state of th

Hwan Wook Kwak, Yong Joon Park

PII: S0040-6090(18)30299-2

DOI: doi:10.1016/j.tsf.2018.04.038

Reference: TSF 36636

To appear in: Thin Solid Films

Received date: 29 November 2017

Revised date: 20 April 2018 Accepted date: 24 April 2018

Please cite this article as: Hwan Wook Kwak, Yong Joon Park , Li2MoO4 coated Nirich cathode for all-solid-state batteries. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2017), doi:10.1016/j.tsf.2018.04.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Li₂MoO₄ coated Ni-rich cathode for all-solid-state batteries

Hwan Wook Kwak and Yong Joon Park*

Department of Advanced Materials Engineering, Kyonggi University, 154-42, Gwanggyosan-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16227, Republic of Korea

*Corresponding author

Department of Advanced Materials Engineering, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi 443-760, Korea Ph: +82-31-249-9769; E-mail: yjpark2006@kyonggi.ac.kr

Abstract

Sulfide electrolytes are very attractive materials for all-solid-state cells because of their high ionic conductivity and good elasticity. However, they are highly reactive and can be easily oxidized due to their side reactions with an oxide cathode, which acts as a major cause for the inferior electrochemical performance of the all-solid-state cells when compared with general cells using liquid electrolytes. In this study, Li₂MoO₄ was used as the coating material of Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O₂ cathode to stabilize the unstable cathode/sulfide electrolyte interface. The discharge capacity of the all-solid-state cells containing the composite electrode was increased by the introduction of Li₂MoO₄ coating. Moreover, the rate capability of the Li₂MoO₄ coated electrode was superior to that of the pristine sample. These results show that the Li₂MoO₄ coating is effective in suppressing the side reaction between the cathode and the sulfide electrolyte. The x-ray photoelectron spectroscopy analysis of the composite electrodes after

Download English Version:

https://daneshyari.com/en/article/8032586

Download Persian Version:

https://daneshyari.com/article/8032586

<u>Daneshyari.com</u>