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The subject of this paper is the analysis of an electrical transmission system with the objective of
identifying its most critical elements with respect to failures and attacks. The methodological approach
undertaken is based on graph-theoretical (topological) network analysis. Four different perspectives of
analysis are considered within the formalism of weighed networks, adding to the purely topological
analysis of the system, the reliability and electrical characteristics of its components. In each phase of
the analysis: i) a graph-theoretical representation is offered to highlight the structure of the most
important system connections according to the particular characteristics examined (topological,
reliability, electrical or electrical-reliability), ii) the classical degree index of a network node is
extended to account for the different characteristics considered. The application of these concepts of
analysis to an electrical transmission system of literature confirms the importance of different
perspectives of analysis on such a critical infrastructure.
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1. Introduction

Engineered critical infrastructures are the systems of interest
in this work. The motivation is that they provide the continuous
flow of essential goods (e.g. energy, water and data) and services
(e.g. banking, health care and transportation) which the welfare
and security of our nations rely on. These critical infrastructures
are subject to a set of multiple hazards and threats which must be
identified and analyzed for optimal protection.

Among the engineered critical infrastructures, the focus of this
work is on the electrical transmission system and its analysis to
identify the importance of the individual elements. The motiva-
tion is that the infrastructure for electrical transmission of most of
the world’s countries is aging and failing, with funding often not
sufficient to repair or replace it; in this situation, there is a
growing demand for a rational, risk-based approach to its opera-
tion and maintenance.

A number of recent studies have addressed the assessment of
vulnerability in electric power systems, by graph-theoretical topo-
logical investigations as in [1-5], physics-based models as in [6-9],
agent-based modeling as in [10]. These studies all refer to the
transmission system and are based on different conceptualizations
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of vulnerability [11]. Also, more sophisticated techniques such as
polyhedral dynamics [12] and artificial intelligence-based search
methods [13,14] have been proposed to find critical elements and
define vulnerability indices.

The topological approach to vulnerability analysis is quite
popular because in spite of its relative simplicity it offers the
capability of identifying elements of structural vulnerability, i.e.
network edges and nodes whose failure can induce a severe
structural damage to the network through the physical discon-
nection of its parts. However, the methods based on such
approach are limited from the point of view of the physical
analysis of the electrical transmission systems, which the graphi-
cal networks represent; the limitations come from the fact that
the analysis focuses only on the topological features of the
network, thus neglecting its physical characteristics [15-17]. In
this respect, it is important to verify the extent of these limita-
tions and possibly overcome them by complementation with
more detailed physical analyses on critical parts of the network
[18,19].

In this paper, the formalism of weighed networks is exploited
to provide different graph-theoretical representations and ana-
lyses of a power transmission system. The aim is to contribute to
reducing the gap between the highly conceptualized (and
abstract) analyses based purely on considerations of the system
topology and the highly detailed (and computationally demand-
ing) simulations of system behavior, in order to render the overall
vulnerability assessment more feasible and robust. The “weights”
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appended to the network elements are intended to capture
relevant electrical and reliability properties of the system, so as
to overcome the classical simplifying but unrealistic assumption
that electrical flow occurs along the shortest and failure-free
paths of connections.

The rest of the paper is organized as follows: Section 2
describes the theoretical basis for the proposed perspectives of
analysis. In Section 3, the work is presented from a practical point
of view with reference to the popular IEEE RTS 96 system [20].
Section 4 contains a critical comparison of the four perspectives of
analysis with an outlook on other perspectives. Conclusions are
drawn in Section 5.

2. Different perspectives of analysis

In the present study, the system is modeled as a stochastic,
weighted, undirected, connected network in which each electric
bus is transposed into a node, linked by edges representing the
overhead lines connecting consecutive buses. In this respect, this
representation focuses on the actual topological structure of the
power transmission network.

Mathematically, the topological structure of the network can
be represented as an undirected graph G(V,E) where V represents
the set of vertexes (or nodes, or components) (N =dim(V) is the
number of nodes) and E represents the set of edges (ij)
(K =dim(E) is the number of edges). The connections are specified
inan N x N adjacency matrix {a;} whose entries are 1 if there is an
edge joining node i to node j and O otherwise.

2.1. Graph-theoretical topological analysis

The transmission network is first analyzed from a purely
topological point of view. In the topological representation, no
specification of the physical length of the edges is given. Each link
is considered having a length equal to one and thus the distance
between two nodes i and j is represented solely by the number of
edges traveled in the path from i to j. On the basis of {aj}, it is
possible to compute the matrix of the shortest path lengths {d;;}
whose generic entry dj is the number of edges making up the
shortest path linking i and j in the network. The fact that G is
assumed to be connected implies that dj; is positive and finite
Vi #j and that there are N(N—1)/2 distinct shortest paths among
the N nodes.

From the matrix of shortest path lengths {d;}, a new matrix
{si} can be computed by considering connected only a number of
Ks links with smallest values of shortest path lengths; the generic
element s;; is equal to 1 if the shortest distance connecting i and j
is one of the Ks smallest values and 0 otherwise.

A synthetic indicator of the topological structure of a complex
network is the distribution of the degree (or connectivity) k; of its
nodes i=1,2,..,N, the degree being defined as the number of edges
incident to the node [21]:

ki=> a3i=12,..N M
jeN
Intuitively, the degree of a node measures its influence in the
graph with respect to the size of its immediate environment.

2.2. Reliability analysis

While some studies witnessed a reasonable association
between the topology of the power grids and the robustness
and stability of the power transmission systems [1,22,23], the
relationship between network structure and system reliability is
also of relevance. In this respect, the formalism of weighted

networks [22] can be undertaken to account for the reliability
properties of the transmission network system. More precisely,
a reliability matrix {p;} can be introduced to describe the network
reliability properties at a local level [24]; the generic element p;
represents the probability of successful transmission along the
edge that connects node i and j.

Since the graph is not fully connected, the reliability matrix
tends to be sparse (p;=0 for all pairs of nodes i and j that do
not share a direct physical connection). In order to obtain a
non-sparse matrix containing the complete information on the
reliability of connection between any two pairs of nodes, the
reliability py, of connection between i and j through any connect-
ing path y;; is computed by a method based on a combination of
cellular automata (CA) and Monte Carlo (MC) sampling [25]. In
this method, the reliability Py, i.e. the probability of a successful
connection from i to j, is computed by MC—sampling a large
number M of random realizations (MC trials) of the states of the
connecting arcs and by CA-computing, for each realization, if a
path from i to j exists; the ratio of the number of successful 7;
paths over the total number of realizations computed gives the
connection reliability from node i to node j.

As indicator of the importance of the nodes from the reliability
point of view, a reliability degree can be introduced as:

ki = Zp},y, i=12,..,N )
jeN
From the reliability analysis, a matrix {sj} is computed on the
basis of the Ks most reliable paths. The matrix element s’; is equal
to 1 if the connection from node i to j is one of the Ks most reliable
connections, and O otherwise. {s}.} can be thought of as the
reliability equivalent of the topological adjacency matrix {a;}.

2.3. Electrical analysis

As mentioned in the Introduction, in the case of electrical
transmission networks of interest here, the existing literature on
vulnerability analysis largely takes a topological approach to
identify the critical components in the network [1,26,5]. Even
though such analyses are capable of identifying elements of
structural vulnerability, they are limited from the point of view
of the physical analysis of the electrical transmission system,
which the networks represent. These limitations are all related to
the fact that the analysis performed focuses only on the topolo-
gical features of the network, thus neglecting its physical
characteristics; this is not realistic for electrical transmission
networks in which: i) the “electrical” length of a path differs
from the topological length, depending on the difficulty (resis-
tance) of transmission, ii) the electrical power is not necessarily
routed through the shortest paths, rather, the transmission of
power is determined by physical rules, e.g. Kirchoff's laws, nodal
voltages, etc.

To practically overcome these limitations, an electrical con-
nectivity metric was introduced within the weighed network
formalism to capture the properties of node centrality, relative
to metrics based on node-edge connectivity [16].

The electrical characteristics of the individual network ele-
ments and their interconnection relationships can be expressed in
terms of the bus admittance matrix, Y**. Inverting the sparse bus
admittance matrix (Yf}“s =0 for all pairs of nodes i and j that do
not share a direct physical connection) that incorporates Kirch-
off’s laws, a non-sparse matrix, known as impedance matrix, can
be obtained.

The matrix of electrical distances is then given by the magni-
tude {m;} of the entries of the matrix Z°, Admittance is a
complete expression of the extent to which a circuit allows a
current to flow; as the absolute value of the complex admittance
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