#### Accepted Manuscript

A bulge test based methodology for characterizing ultra-thin buckled membranes

Salman Shafqat, Olaf van der Sluis, Marc Geers, Johan Hoefnagels

PII: S0040-6090(18)30259-1

DOI: doi:10.1016/j.tsf.2018.04.005

Reference: TSF 36603

To appear in: Thin Solid Films

Received date: 21 February 2018
Revised date: 27 March 2018
Accepted date: 5 April 2018

Please cite this article as: Salman Shafqat, Olaf van der Sluis, Marc Geers, Johan Hoefnagels, A bulge test based methodology for characterizing ultra-thin buckled membranes. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2017), doi:10.1016/j.tsf.2018.04.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



## **ACCEPTED MANUSCRIPT**

## A bulge test based methodology

## for characterizing ultra-thin buckled membranes

Salman Shafqat<sup>1</sup>, Olaf van der Sluis<sup>1, 2</sup>, Marc Geers<sup>1</sup>, and Johan Hoefnagels<sup>1, †</sup>

<sup>1</sup> Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB

Eindhoven, the Netherlands;

s.shafqat@tue.nl; o.v.d.sluis@tue.nl; m.g.d.geers@tue.nl; j.p.m.hoefnagels@tue.nl

<sup>2</sup> Philips Research, High Tech Campus 4, 5654 AE Eindhoven, the Netherlands

<sup>†</sup> Corresponding author: j.p.m.hoefnagels@tue.nl; Tel.: +31-40-2475894

#### **Abstract**

Buckled membranes become ever more important with further miniaturization and development of ultra-thin film based systems. It is well established that the bulge test method, generally considered the gold standard for characterizing freestanding thin films, is unsuited to characterize buckled membranes, because of compressive residual stresses and a negligible out-of-plane bending stiffness. When pressurized, buckled membranes immediately start entering the ripple regime, but they typically plastically deform or fracture before reaching the cylindrical regime. In this paper the bulge test method is extended to enable characterization of buckled freestanding ultra-thin membranes in the ripple regime. In a combined experimental-numerical approach, the advanced technique of digital height correlation was first extended towards the

#### Download English Version:

# https://daneshyari.com/en/article/8032639

Download Persian Version:

https://daneshyari.com/article/8032639

<u>Daneshyari.com</u>