
Safety certification of airborne software: An empirical study

Ian Dodd a,1, Ibrahim Habli b,n

a Airservices Australia, Building 101 Da Vinci Business Park, Locked Bag 747 Eagle Farm, QLD 4009, Australia
b Department of Computer Science, University of York, York YO10 5GH, United Kingdom

a r t i c l e i n f o

Article history:

Received 8 February 2011

Received in revised form

11 August 2011

Accepted 24 September 2011
Available online 1 October 2011

Keywords:

Software safety

Certification

Airborne software

DO178B

Safety standards

Safety requirements

a b s t r a c t

Many safety-critical aircraft functions are software-enabled. Airborne software must be audited and

approved by the aerospace certification authorities prior to deployment. The auditing process is time-

consuming, and its outcome is unpredictable, due to the criticality and complex nature of airborne

software. To ensure that the engineering of airborne software is systematically regulated and is

auditable, certification authorities mandate compliance with safety standards that detail industrial best

practice. This paper reviews existing practices in software safety certification. It also explores how

software safety audits are performed in the civil aerospace domain. The paper then proposes a

statistical method for supporting software safety audits by collecting and analysing data about the

software throughout its lifecycle. This method is then empirically evaluated through an industrial case

study based on data collected from 9 aerospace projects covering 58 software releases. The results of

this case study show that our proposed method can help the certification authorities and the software

and safety engineers to gain confidence in the certification readiness of airborne software and predict

the likely outcome of the audits. The results also highlight some confidentiality issues concerning the

management and retention of sensitive data generated from safety-critical projects.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Commercial airlines provide one of the safest forms of public
transportation [1]. This has partly been achieved by placing high
safety-integrity targets on all aspects of the industry from aircraft
design and maintenance to crew training and aircraft operation.
To ensure that aircraft systems are designed and manufactured to
the required targets, different countries have commissioned
various organisations that are responsible for auditing these
critical systems. Flight approval or certification authorities
include the European Aviation Safety Agency (EASA) in Europe
[2] and the Federal Aviation Administration (FAA) in the USA [3].
When aircraft systems are first developed or upgraded, it is the
responsibility of the flight certification authorities to approve the
system design before it is cleared for flight. This process is known
as Type Certification, where the authorities approve one sample
of the proposed system type for flight use. Any exact copy of that

type is also approved for flight use as long as it meets predefined
design and operational constraints.

In modern avionics, it is the norm that the functionality is
implemented using a microprocessor running complex computer
software. In many cases, the avionics is a safety-critical item and
therefore must be designed and built to the highest levels of
safety integrity. The overall safety integrity of the avionics,
comprising both software and hardware, is typically specified
quantitatively, e.g. in terms of failure rates. However, for soft-
ware, it is widely accepted that there is a limit on what can be
quantitatively demonstrated [4,5], e.g. by means of statistical
testing and operational experience. To address this limitation,
many aerospace software standards appeal instead to the quality
of the development process to assure the dependability of the
software. In the civil aerospace domain, DO178B (Software
Considerations in Airborne Systems and Equipment Certification)
is the primary guidance for the approval of airborne software [6].

Throughout the software process, the certification authorities
are required to audit the development, verification and support
activities. The audits are known as Stage of Involvement (SOI)
audits. Each audit is positioned at strategic points in the lifecycle
to reduce the risk of failing the final certification audit. An early
indication of a potential certification failure is vital to ensure that
the software process is not heading in the wrong direction. An
audit failure will normally require that an artefact must be
reworked before the audit can be repeated. The typical time

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

0951-8320/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ress.2011.09.007

n Corresponding author.

E-mail addresses: Ian.Dodd@AirservicesAustralia.com (I. Dodd),

Ibrahim.Habli@cs.york.ac.uk (I. Habli).
1 Disclaimer: The research in this paper was completed before the author

joined Airservices Australia and therefore does not necessarily represent the views

of his current employer. None of the data used for illustration is related to any

product or activity provided by Airservices Australia.

Reliability Engineering and System Safety 98 (2012) 7–23

www.elsevier.com/locate/ress
www.elsevier.com/locate/ress
dx.doi.org/10.1016/j.ress.2011.09.007
mailto:Ian.Dodd@AirservicesAustralia.com
mailto:Ibrahim.Habli@cs.york.ac.uk
dx.doi.org/10.1016/j.ress.2011.09.007


duration between audits is four to six months. It is therefore
important for the software and safety engineers to have an
indication of how well the software process is adhering to the
certification requirements before a SOI audit is performed. In
aerospace software projects, it is common practice to collect
metrics about the defects found during the lifecycle of the project
and relate these defects to a common denominator (e.g. the
number of defects found per lines of code). By relating these
defect metrics to the requirements of the certification authorities,
indicators can be generated to determine the readiness of the
software for its next SOI audit.

In this paper, we identify a set of issues concerning the
auditing process for the approval and certification of airborne
software. These issues were generated from interviews with
experienced independent software auditors. We then propose,
and empirically evaluate, a statistical method for supporting
software certification audits based collecting and analysing data
about the software throughout its lifecycle. This collected data is
first normalised and then weighted against certification factors
such as the number and types of defects, which relate to system
safety. The evaluation of our proposed method is based on an
industrial case study covering data collected from 9 aerospace
projects and comprising 58 software releases. In this work, we
focus on two groups of stakeholders, namely certification author-
ity auditors and development teams. Auditors could use the trend
of the data over the history of a project lifecycle to identify
software problems and possibly misleading information. The data
could also used by the development teams within aerospace
companies to assess the readiness of a software project against
the certification targets. As part of our evaluation, we present the
advantages and limitations of our approach from the viewpoint of
both the developers and auditors.

This paper is organised as follows. Section 2 reviews existing
approaches to software certification and related work. Section 3
describes a set of auditing issues concerning the software certi-
fication process. Section 4 proposes a statistical method for
addressing many of the auditing issues listed in Section 3 based
on the concept of Statistical Process Monitoring (SPM). This
method is empirically evaluated in Section 5 through an indus-
trial case study based on a set of data collected from anonymous
aerospace manufacturers responsible for the development of
safety-critical airborne software. A detailed discussion of the case
study is provided in Sections 6 and 7. The legal and ethical issues
concerning our proposed method are discussed in Section 8
followed by conclusions in Section 9.

2. Background and related work

2.1. Software safety certification

Certification refers to the ‘‘process of assuring that a product or

process has certain stated properties, which are then recorded in a

certificate’’ [7]. Assurance can be defined as justified confidence in
a property of interest [8]. Whereas the concept of safety and
assurance cases [9–11] is heavily used in goal-based standards in
critical domains such as defence [12,13], rail [14] and oil and gas
[15], compliance with prescriptive standards tend to be the norm
in the civil aerospace domain [16–18], particularly with regard to
the approval and certification of airborne software [6,19]. In
prescriptive certification, developers show that a software system
is acceptably safe by appealing to the satisfaction of a set of
process objectives that the safety standards require for compli-
ance. The means for satisfying these objectives are often tightly
defined within the prescriptive standards, leaving little room for
developers to apply alternatives means for compliance, which

might better suit their software products and processes. One
fundamental limitation of prescriptive software standards lies in
the observation that good tools, techniques and methods do not
necessarily lead to the achievement of a specific level of integrity.
The correlation between the prescribed techniques and the
failure rate of the system is infeasible to justify [16,20]. In goal-
based certification, on the other hand, standards require the
submission of an argument, which communicates how evidence,
generated from testing, analysis and review, satisfies claims
concerning the safety of the software functions. Despite the
advantages of explicit safety arguments and evidence, there are
some concerns regarding the adequacy of the guidance available
for the creation of assurance arguments, which comply with the
goals set within these standards (i.e. lack of sufficient worked
examples of arguments or sample means for generating evi-
dence). Many studies have considered and compared these two
approaches to software safety assurance [21–23], highlighting
advantages and limitations of each and how they might comple-
ment each other [24].

2.2. DO178B

In the civil aerospace domain, DO178B is the primary guidance
for the approval of airborne software. The purpose of the DO178B
document is ‘‘to provide guidelines for the production of software for

airborne systems and equipment that performs its intended function

with a level of confidence in safety that complies with airworthiness

requirements’’ [6]. DO178B defines a consensus of the aerospace
community concerning the approval of airborne software. To
obtain certification credit, developers submit lifecycle plans and
data that show that the production of the software has been
performed as specified by the DO178B guidance. The DO178B
guidance distinguishes between different levels of assurance
based on the safety criticality of the software, i.e. how software
components may contribute to system hazards. The safety criti-
cality of software is determined at the system level during the
system safety assessment process based on the failure conditions
associated with software components. These safety conditions are
grouped into five categories: ‘Catastrophic’, ‘Hazardous/Severe-

Major’, ‘Major’, ‘Minor’ and ‘No Effect’ [25,26]. The DO178B
guidance then defines five different assurance levels, which relate
to the above categorisation of failure conditions (Levels A to E,
where Level A is the highest and therefore requires the most
rigorous processes). Each level of software assurance is associated
with a set of objectives, mostly related to the underlying lifecycle
process, e.g. planning, development and verification activities
(Fig. 1). For example, to achieve software level ‘C’, where faulty
software behaviour may contribute to a major failure condition,
57 objectives have to be satisfied. On the other hand, to achieve
software level ‘A’, where faulty software behaviour may contri-
bute to a catastrophic failure condition, nine additional objectives
have to be satisfied—some objectives achieved with indepen-
dence [27].

To demonstrate compliance with DO178B, applicants are
required to submit the following lifecycle data to the certification
authorities:

� Plan for Software Aspects of Certification (PSAC)
� Software Configuration Index
� Software Accomplishment Summary (SAS)

They should also make all software lifecycle data, e.g. related
to development, verification and planning, available for review by
the certification authorities. In particular, the SAS should provide

I. Dodd, I. Habli / Reliability Engineering and System Safety 98 (2012) 7–238



Download English Version:

https://daneshyari.com/en/article/803281

Download Persian Version:

https://daneshyari.com/article/803281

Daneshyari.com

https://daneshyari.com/en/article/803281
https://daneshyari.com/article/803281
https://daneshyari.com

