Accepted Manuscript

TeO2.33/SiO2 one-dimensional photonic crystals with defect layer and its photo-induced effect

layer and its photo induced effect

Heon Kong, Jong-Bin Yeo, Hyun-Yong Lee

PII: S0040-6090(18)30115-9

DOI: doi:10.1016/j.tsf.2018.02.028

Reference: TSF 36490

To appear in: Thin Solid Films

Received date: 11 June 2017
Revised date: 9 February 2018
Accepted date: 17 February 2018

Please cite this article as: Heon Kong, Jong-Bin Yeo, Hyun-Yong Lee, TeO2.33/SiO2 one-dimensional photonic crystals with defect layer and its photo-induced effect. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2017), doi:10.1016/j.tsf.2018.02.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

TeO_{2,33}/SiO₂ one-dimensional photonic crystals with defect layer and its photo-induced effect

Heon Kong¹, Jong-Bin Yeo² and Hyun-Yong Lee^{2,a)}

¹Department of Advanced Chemicals & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

²School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

a) Corresponding author. Tel: +82-62-530-1903; fax: +82-62-530-1909

E-mail address: hyleee@chonnam.ac.kr

Abstract

The aim of this work is to experimentally investigate one-dimensional (1D) photonic

crystals (PCs) and the photo-induced effect of their defect layer. A radio frequency (RF)

magnetron sputtering technique was used to fabricate ten-pair 1D PCs with and without a

single defect layer, utilizing TeO_{2,33} and SiO₂ with different refractive indices. The photonic

band structures in the PCs were also analyzed, and the measured transmittance (T) spectra

were compared with the simulated results. The 1D PC without a defect layer had a forbidden

band gap in the wavelength range of 1,203–1,421 nm. The 1D PC with defect layer generated

a sharp peak within a photonic band gap (PBG) at the central wavelength of 1,291 nm. After

exposure to a He-Cd laser of λ = 325 nm, the resonant T peak shows red-shift because of

photodarkening effect caused by the behavior of valence-alternation pairs (VAPs) in

amorphous chalcogenides.

Keywords: One-dimensional photonic crystals, Photonic band gap, Photo-induced effect,

Photodarkening, Sputtering, Defect layer

Download English Version:

https://daneshyari.com/en/article/8032816

Download Persian Version:

https://daneshyari.com/article/8032816

<u>Daneshyari.com</u>