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a b s t r a c t

This paper investigates the issue of performing a first-order sensitivity analysis in the setting of

dynamic reliability. The likelihood ratio (LR) derivative/gradient estimation method is chosen to fulfill

the mission. Its formulation and implementation in the system-based Monte Carlo approach that is

commonly used in dynamic reliability applications is first given. To speed up the simulation, we then

apply the LR method within the framework of Z-VISA, a biasing (or importance sampling) method we

have developed recently. A widely discussed dynamic reliability example (a holdup tank) is studied to

test the effectiveness and behaviors of the LR method when applied to dynamic reliability problems and

also the effectiveness of the Z-VISA biasing technique for reducing the variance of LR derivative

estimators.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

‘‘Dynamic reliability’’ [1,2] has been gaining significant inter-
national momentum in recent years. A host of methodologies
have been proposed [3,4], including Discrete Dynamic Event Tree
(DDET) [5–8], Monte Carlo (MC) simulation [9–12], Cell-to-Cell
Mapping Technique (CCMT) [13], etc. These dynamic reliability
methods capture explicitly the influence of time and process
dynamics on scenarios, which is often difficult in the classical
Event Tree/Fault Tree (ET/FT) approach. The modeling and thus
the risk assessment results that these dynamic reliability methods
produce are believed to be of higher fidelity with respect to
reality. However, most research efforts in the field so far have
been dedicated to evaluating relevant probabilities, while there
has been little work on importance and sensitivity analysis.

In risk and reliability applications, importance and sensitivity
analysis is of paramount value as it provides useful information
regarding the importance of various components/parameters of a
system in view of their risk or safety significance. Such impor-
tance and sensitivity information can play an important role in a
number of engineering activities/processes. Firstly, it can help risk
analysts and managers to identify system vulnerabilities or weak
points, and prioritize system parts that need improvement.
Proper decisions can be made, based on this knowledge, about

investment of resources (time, money, etc.) into relevant activ-
ities (design, diagnostics, maintenance, etc.). Secondly, as far as
data uncertainty is concerned, such importance and sensitivity
information can also provide guidelines for effort allocation in
reliability data collection. For example, more efforts are worthy
when collecting data of those parts that have larger sensitivities,
since large uncertainties in those parts’ input data are likely to
lead to large uncertainties in the final risk assessment results. For
derivative sensitivities, a third class of applications is optimiza-
tion. One wishes to set various parameters that are controllable to
optimize some performance measure. Sensitivity analysis is often
the first step in an optimization. For convex optimization and
more general optimization algorithms that employ gradient-
based search, derivatives are key elements. Another possible
application of derivatives is interpolation (see [14] and references
therein for more details).

Much work has been done on importance and sensitivity
analysis in classical risk and reliability analysis (as opposed to
dynamic reliability). A number of importance measures have been
developed, such as Birnbaum’s Measure, Risk Achievement Worth
(RAW), Risk Reduction Worth (RRW), Fussell–Vesely’s Measure, and
Criticality Importance [15,16]. These importance measures are
widely used and play an important role in practice. However, there
are shortcomings and limitations to the current importance analysis
[16,17]. One such limitation is that it is typically performed at the
component level. It is often desirable, however, to investigate the
issue of importance at a more elementary level (parameter level,
i.e., to evaluate the sensitivities (derivatives) of some system risk/
reliability metric with respect to various parameters). One reason is
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that parameter-level sensitivities are more general and have a
wider area of applications. Secondly, in practice many engineering
activities and decision-makings are carried out at the level of
parameters (e.g., failure rates, repair rates). Furthermore, most of
the importance measures that were developed for classical relia-
bility analysis are not applicable for the setting of dynamic
reliability. At the current time, no mature importance measure
exists for dynamic reliability applications, while in principle para-
meter-level sensitivities are also applicable for dynamic reliability
as well as classical reliability analysis.

In this work, we investigate how to evaluate derivatives of a
given system risk/reliability metric with respect to relevant
parameters in the setting of dynamic reliability. In usual, system
risk/reliability metrics (more generally, system performance
measures) can be expressed as an expectation of some function
of the parameter vector y and the sample path o, say h(y,o), with
respect to a probability measure Py over some measurable space
(O,F )

rðyÞ ¼ EPy ½hðy,oÞ� ¼
Z
O

hðy,oÞdPyðoÞ ¼
Z
O

hðy,oÞf ðy,oÞdo ð1Þ

where EPy denotes expectation taken with respect to Py, and it is
assumed that there exists a probability density function f(y,o) for
the probability measure Py. Due to the problem complexity,
evaluations of r(y) and its derivatives are often analytically and
numerically intractable, and one needs to resort to simulation.
We focus here on an important class of sample performance
functions, h(y,o)¼ I{oAR}, namely an indicator function of the
event {oAR}, where R is some domain of interest in the sample
space (e.g., failure/accident domain). It then follows that the risk/
reliability metric r(y) represents the probability that the system
enters some failure/accident domain. Our aim is to estimate, via
simulation, the failure/accident probability and its sensitivities
(derivatives) to relevant parameters

rðyÞ ¼
Z
O

IfoARgf ðy,oÞdo ð2Þ

@

@yi
rðyÞ ¼

@

@yi

Z
O

IfoARgf ðy,oÞdo ð3Þ

where yi is the ith component of the parameter vector
y¼(y1, y,yd), with d being the number of parameters of interest.
For notational simplicity, we denote qr(y)/qyi by ryi

sometimes.
In practice, safety-critical systems such as nuclear power

plants, airplanes, spacecrafts, and chemical plants, are usually
highly reliable. The probability of the event {oAR}, namely the
system enters the failure/accident domain R, is generally very
low. Hence, we are often facing the well-known rare event
simulation challenge. Without proper variance reduction techni-
ques, an excessive number of histories need to be simulated
before achieving a satisfactory statistical accuracy, thus resulting
in an unacceptably long computing time. This problem may
become even more formidable for dynamic reliability applica-
tions which involve physical processes and might need a sig-
nificant computer time for simulating even a single history due
to the heavy computation burden incurred by the calculation
of system dynamics. Therefore, we need to take into account
the computational cost challenge (mainly the variance issue)
when estimating system risk/reliability metrics and their
derivatives.

The rest of this paper is organized as follows. Section 2 gives a
brief description of dynamic reliability. In Section 3, we investi-
gate the main derivative/gradient estimation techniques that
exist in the literature and conclude that the likelihood ratio (LR)
method fits our context well. Applications of the LR method
within the commonly adopted system-based analog Monte Carlo

approach and within the framework of Z-VISA are presented in
Sections 4 and 5, respectively. A well-known dynamic reliability
example (a holdup tank) is studied in Section 6. The final section
offers some concluding remarks.

2. Dynamic reliability

In a dynamic reliability context, the evolution of the system is
significantly affected by an underlying process dynamics (process
variables such as temperature, pressure, and liquid level). The two
constituents of the system, hardware components (also software
and human elements, more generally) and process variables,
together determine the evolution of the system through interact-
ing with each other. On the one hand, modification of the system’s
hardware configuration (due to stochastic failures of hardware
components or actions of control/protection devices) may change
the mode of process variables’ evolution; on the other hand, the
evolution of process variables can induce operations of control/
protection devices upon reaching preset thresholds; process
dynamics may also affect hardware components’ stochastic char-
acteristics (e.g., a high temperature leads to increased component
failure rates). Therefore, an integrated treatment needs to be
made for hardware components, process dynamics, and their
interactions when dealing with such dynamic reliability pro-
blems. Another characteristic of dynamic reliability induced by
the involvement of process dynamics is that the definition of
system failure is not restricted to the system transitioning to
some failed hardware configurations as in classical reliability
analysis. It could also be a crossing of the boundary of a safety
domain in the space of process variables.

As the system evolves with time, two different types of
transitions can occur: transitions in operation and transitions on
demand.1 The first category of transitions is characterized by: the
timing of transitions is random and can usually be described by a
continuous probability distribution. Examples of such transitions
are failure of a component, repair of a component, etc. The second
category of transitions differs from the first one in that: the
timing of transitions is not random while the outcome could be
either deterministic or random, depending on different assump-
tions. If the outcome is considered to be random, it can often be
described by a discrete probability distribution. An example of
such a transition is the switching of a valve demanded by the
control/protection system when the pressure or liquid level
reaches a preset threshold. If one assumes that the valve will
always switch successfully, then the outcome is deterministic;
but if a non-zero failure probability of switching is assumed, the
outcome would then be random.

The above two different types of transitions modify the
system’s hardware configuration, which may lead to changing
the evolution mode of the underlying process dynamics. Thus, as
the system evolves, it switches randomly from one dynamics to
another. (Hence, the term ‘‘probabilistic dynamics’’ is sometimes
used as an alternative for ‘‘dynamic reliability’’.) More formally,
let the hardware configuration of the system, which can be
identified by the states of all components, be indexed by an
integer i. Let the vector of process variables be denoted by x
(xARd, with d being the number of process variables). The state
of the whole system can be identified by the pair (i,x). In general,
the evolution of process variables in a certain configuration
follows a physical model depending on the specific configuration,

1 Some other terms that have similar meanings are also used in the literature,

e.g., transitions during operation, transitions in time, time-based transitions for

the first type of transitions, and transitions upon demand, demand-based transi-

tions for the second type of transitions.
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