Accepted Manuscript

Microstructure and charge trapping in ZrO2- and Si3N4-based superlattice layer systems with Ge nanoparticles

Sarah Seidel, Lars Rebohle, Slawomir Prucnal, David Lehninger, René Hübner, Volker Klemm, Wolfgang Skorupa, Johannes Heitmann

PII:	S0040-6090(17)30791-5
DOI:	doi:10.1016/j.tsf.2017.10.029
Reference:	TSF 36297
To appear in:	Thin Solid Films
Received date:	19 May 2017
Revised date:	11 October 2017
Accepted date:	12 October 2017

Please cite this article as: Sarah Seidel, Lars Rebohle, Slawomir Prucnal, David Lehninger, René Hübner, Volker Klemm, Wolfgang Skorupa, Johannes Heitmann, Microstructure and charge trapping in ZrO2- and Si3N4-based superlattice layer systems with Ge nanoparticles. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2017), doi:10.1016/j.tsf.2017.10.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Microstructure and charge trapping in ZrO₂- and Si₃N₄-based superlattice layer systems with Ge nanoparticles

<u>Sarah Seidel^{1,2}</u>, Lars Rebohle¹, Slawomir Prucnal¹, David Lehninger², René Hübner¹, Volker Klemm³, Wolfgang Skorupa¹, Johannes Heitmann²

¹Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden Rossendorf, D-01314 Dresden, Germany ²Institute for Applied Physics, Technical University Bergakademie Freiberg, D-09596, Germany ³Institute of Material Science, Technical University Bergakademie Freiberg, D-09596,

Germany

Abstract

Ge was deposited on silicon as a superlattice with 10 layers of Ge embedded in Si_3N_4 or ZrO_2 matrices via plasma enhanced chemical vapor deposition or RF-sputtering, respectively. Raman spectroscopy, transmission electron microscopy and capacitance-voltage (CV) measurements were performed in order to investigate the structural and electrical properties of the superlattices. It will be shown that, in contrast to furnace annealing, flash lamp annealing of Ge-ZrO₂-superlattices leads to crystalline Ge nanoparticles in an amorphous matrix. As revealed by CV measurements, these layers show excellent charge storage capabilities. In comparison, a higher thermal budget is needed to crystallize Ge in case of Si_3N_4 -based superlattices, and no significant charge trapping could be detected during CV measurements.

Keywords: Germanium; Nanocrystals; Zirconium oxide, Silicon nitride; Superlattice; Flash lamp annealing; Charge trapping Download English Version:

https://daneshyari.com/en/article/8033145

Download Persian Version:

https://daneshyari.com/article/8033145

Daneshyari.com