Accepted Manuscript

A star-shaped photovoltaic organic molecule based on 1,3-diethyl-2-thiobarbituric acid reaches a power conversion efficiency of 3.07%

Jing Zhang, Linjun Xu, Jiawei Chen, Ping Shen, Mingfu Ye, Ning-Yi Yuan, Jian-Ning Ding

PII:	S0040-6090(17)30808-8
DOI:	doi:10.1016/j.tsf.2017.10.046
Reference:	TSF 36314
To appear in:	Thin Solid Films
Received date:	23 June 2017
Revised date:	16 October 2017
Accepted date:	23 October 2017

Please cite this article as: Jing Zhang, Linjun Xu, Jiawei Chen, Ping Shen, Mingfu Ye, Ning-Yi Yuan, Jian-Ning Ding , A star-shaped photovoltaic organic molecule based on 1,3-diethyl-2-thiobarbituric acid reaches a power conversion efficiency of 3.07%. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tsf(2017), doi:10.1016/j.tsf.2017.10.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Star-Shaped Photovoltaic Organic Molecule Based on 1,3-Diethyl-2-thiobarbituric Acid Reaches a Power Conversion Efficiency of 3.07%

Jing Zhang¹, Linjun Xu¹, Jiawei Chen¹, Ping Shen^{3*}, Mingfu Ye^{2*}, Ning-Yi Yuan^{1*}, Jian-Ning

Ding^{1*}

¹School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science & Engineering, Changzhou University, Changzhou 213164, Jiangsu, China. Email: nyyuan@cczu.edu.cn; <u>dingjn@cczu.edu.cn</u> ²School of Chamieran and Chamieral Engineering, Anhui University of Technology, Magnaham, 242002, Anhui

²School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China. E-mail: yemingfu@ahut.edu.cn

³College of Chemistry and Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, China. E-mail: shenping802002@163.com

Abstract

A star-shaped organic molecule (TPA-bHTV-DT) with triphenylamine (TPA), 4,4'-dihexyl-2,2'-bithiophenevinylene (bHTV) and 1,3-diethyl-2-thiobarbituric acid has been synthesized. TPA-bHTV-DT film shows a broad absorption from 400 nm to 700 nm in the visible range. The solution-processable organic solar cells based on a blend of TPA-bHTV-DT and [6,6]-phenyl-C-71-butyric acid methyl ester (1:3, w/w) exhibited a power conversion efficiency of 3.07%, with a short-circuit current density of 7.87 mA. cm⁻², an open-circuit voltage of 0.92 V and an fill factor of 42.4%.

Download English Version:

https://daneshyari.com/en/article/8033146

Download Persian Version:

https://daneshyari.com/article/8033146

Daneshyari.com