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a b s t r a c t

A methodology of dynamic operational risk assessment (DORA) is proposed for operational risk analysis

in oil/gas and chemical industries. The methodology is introduced comprehensively starting from the

conceptual framework design to mathematical modeling and to decision making based on cost–benefit

analysis. The probabilistic modeling part of DORA integrates stochastic modeling and process dynamics

modeling to evaluate operational risk. The stochastic system-state trajectory is modeled according to

the abnormal behavior or failure of each component. For each of the possible system-state trajectories,

a process dynamics evaluation is carried out to check whether process variables, e.g., level, flow rate,

temperature, pressure, or chemical concentration, remain in their desirable regions. Component

testing/inspection intervals and repair times are critical parameters to define the system-state

configuration, and play an important role for evaluating the probability of operational failure. This

methodology not only provides a framework to evaluate the dynamic operational risk in oil/gas and

chemical industries, but also guides the process design and further optimization. To illustrate the

probabilistic study, we present a case-study of a level control in an oil/gas separator at an offshore

plant.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The oil/gas and chemical process systems exhibit complicated
and dynamic behavior. Various time-dependent effects such as
season changes, aging of process equipment, physical processes,
stochastic processes, operator response time, etc. are involved in
such dynamic processes. With the accumulated experience of
quantitative risk assessment and the progressive awareness of
dynamic characteristics of reliability and safety, conventional
approaches lack the ability to address these issues in quantitative
risk assessment for dynamic processes [1,2]. For instance, fault
tree/event tree analysis (FTA/ETA) [3], initially applied in nuclear
power plants, collects a set of logical expressions to represent
static relationship between a component output event and
component failure or another component output event in the
process system. FTA is a good implementation tool using logic to
identify output deviations due to input deviations or internal
failures, but withdraws the system dynamic response to time,
process variables, and human behavior [4].

The review by Siu regarding the research on reliability and
safety assessment of dynamic process systems is an important

summary of the work already performed in this field of study [5].
Dynamic probabilistic risk assessment (DPRA) was first proposed
by Amendola to study the likelihood of accident sequences in a
nuclear reactor [6]. Upgrades in the conventional event tree
analysis have resulted in two alternates methods: continuous
dynamic event tree (C-DET) [7] and discrete dynamic event tree
(D-DET) [8]. Which method used is dependent on how the
branching times are selected. Monte Carlo sampling from the
distribution of stochastic variables is the basis for event time
selection in the C-DET approach. Whereas, branching time
selection in the D-DET approach follows a set of rules, such as a
discrete approximation of the corresponding C-DET [9]. Computer
code, MSAS (Monte Carlo simulation for accident sequences) [10],
is designed to implement C-DET, and codes DYLAM [6], DETAM
[11], as well as ADS [9], are designed for D-DET. However,
deficiencies exist in all these approaches. For example, DYLAM
does not consider dependency between component failure and
the inspection as well as maintenance of equipment [12]. It is
also limited by underestimating the failure probability due to
cutoff probability laws [13]. Another widely used approach in
dynamic reliability and safety analysis is the application of the
Markov theory [14]. The Markov theory is applicable to describe
the stochastic behavior of a chemical process if the process
has Markov properties. Several approximate applications of the
Markovian method for dynamic safety analysis are published
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[12,15–17]. However, these methods overlook the impact of
inspection on the system-state transitions and the subsequent
process variable evolution. When testing or inspection comes into
play, the time between component abnormal event occurring but

undetected and component abnormal event detected is not essen-
tially an exponential distributed random variable. The distribu-
tion of system-state sojourn time could be arbitrary. This will
introduce a derivative to the conventional Markovian process.
Even though the semi-Markovian process is valid for a non-
exponential distribution case, the system-state transition does
not essentially have Markovian property. The evolution of system-
state is not necessarily either a Markovian process or a semi-
Markovian process. Additionally, the process variable evolution
has to be discretized in the Markovian approximation approaches.
Within these approaches, process variables are considered as well
as the component performance indicators to define the states in a
Markov chain. On the one hand, the discretization must be
exclusive enough to simulate the actual continuous and dynamic
behavior of the process variable; on the other hand, adequate
discretization will introduce computational burden.

The DORA methodology proposed in this study is similar to the
ones introduced above in that the probabilistic modeling integrates
process dynamic behavior and system stochastic behavior due to
component performance permutation. The resulting improvements
with this study include the following:

� The DORA probabilistic modeling is entirely independent of
the conventional quantitative risk assessment tools such as
fault tree or event tree analysis. It considers dynamic effect of
the oil/gas and chemical processes as the research in the
literature review does but not follows the same logic relation-
ship among different scenarios in the process.
� The component performance permutation is not limited to

component failure. Component abnormal event is also con-
sidered so that this methodology is applicable to scenarios
with either system shutdown due to component failure or
system remaining in process in the presence of component
abnormal event.
� Component states are not only limited to ‘up’ and ‘down’ to

study the system stochastic behavior. Testing/inspection
intervals and component repair times are important para-
meters to define the component states. It provides insights for
testing/inspection interval optimization.
� The system-state trajectory is simulated upon Monte Carlo

sampling from the distribution of stochastic variable. The
restriction to apply Markov chain is removed.
� The demand of large simulation numbers is decomposed

appropriately in this study.

Section 2 explains, in detail, the framework of DORA and
elements of the methodology. In Section 3, level control in an
oil/gas separator is presented as a case-study for the probabilistic
modeling part of DORA. Finally, the conclusion and future work
are presented in Section 4.

2. Methodology

2.1. DORA framework

The proposed DORA framework is shown in Fig. 1.
Scope identification and system description plays an important

role in DORA as a foundation and starting point for further hazard
identification and mathematical model development. The scope of
a DORA project has to be defined for the study to be better

managed, controlled, verified, and communicated to the stake-
holders or customers. According to the demand of the stake-
holders/customers, the analysis scope varies from a small scale of
system, for instance a liquid storage tank, to a middle size of
system, say, a cracker unit, to a large scale of system (perhaps the
whole refinery plant) and so forth. Regardless of the size of the
study scope, the system will be broken down into several
subsystems, further components. Each component or a group of
components within the same subsystem has its own fashion of
failure mode.

Generally, hazard identification by itself can be performed at
any stage during the initial design or ongoing operation of a
process. However, it is required to be performed before the
mathematical modeling for probabilistic safety analysis in the
DORA framework. The DORA mathematical modeling is scenario
and failure mode specific. Hazard identification is the step
directing to the discovery of the scenario and component failure
mode. Therefore, hazard identification and the subsequent scenario

identification, and component failure mode identification steps are
necessary in the early stage of the operational risk assessment in a
DORA study. The hazard identification methods for DORA are
adapted from general hazard identification.

There could be several scenarios that lead to the same
consequence in a process. For example, for fire hazard in a fuel
storage tank system, multiple scenarios might be identified as the
direct causes coincided with an ignition source: overflow of the
storage tank, leakage at the tank bottom, leakage at piping, etc.
The process dynamics modeling and incident consequence analysis
are scenario specific. In each scenario, a unique dynamics model is
developed to characterize the physical features of the process. It is
important to identify the component failure mode in a DORA study.
The reasons are, firstly, any scenario identified in the last step has
resulted from certain component failures or abnormal events. In this
study, the term ‘failure mode’ is used for both actual equipment
failure mode and abnormal event mode. An explicit DORA study is
dependent on identifying all the possible hazards, scenarios, and
component failure mode combinations. There are usually multiple
components in the same system. Different component failure mode
combinations could lead to the same scenario. The relationship
among scope identification and system description, hazard identifica-

tion, scenario identification, and component failure mode identification

is shown in Fig. 2. For any one of the a hazards identified, b scenarios
need to be analyzed. In each of the b scenarios, there could be c

possible component failure mode combinations driving the scenario.
Secondly, this step connects the previous qualitative steps and the
following quantitative assessment steps. The reliability data needed
for further system performance analysis are failure mode specific.
For the same piece of equipment, reliability data for different
failure modes are totally different. The component failure mode
identification will determine what component reliability data to be
used as the input of the quantitative analysis steps.

DORA probabilistic modeling integrates process dynamics
modeling and stochastic modeling to analyze the behavior of
process variables in the presence of component failure/abnormal
event. The evolution of incidental sequences in a process system
is a combination of deterministic and stochastic events. The
physical behavior of a process is a set of deterministic events, and
the system component performance determines the stochastic
events. The linkage between the two is that the stochastic system-
state trajectory is the driven force of the process physical variable
trajectory. In this step, attention is confined to developing a
systematic DORA probabilistic modeling for computing the
probability of process variables exceeding the operational safety
boundaries using considerable computational space storage and
time consumption. This step will be explained in further detail in
next section.
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