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a b s t r a c t

The complexity of mathematical models used by practicing engineers is increasing due to the growing

availability of sophisticated mathematical modeling tools and ever-improving computational power. For

this reason, the need to define a well-structured process for validating these models against

experimental results has become a pressing issue in the engineering community. This validation

process is partially characterized by the uncertainties associated with the modeling effort as well as the

experimental results. The net impact of the uncertainties on the validation effort is assessed through the

‘‘noise level of the validation procedure’’, which can be defined as an estimate of the 95% confidence

uncertainty bounds for the comparison error between actual experimental results and model-based

predictions of the same quantities of interest. Although general descriptions associated with the

construction of the noise level using multivariate statistics exists in the literature, a detailed procedure

outlining how to account for the systematic and random uncertainties is not available. In this paper, the

methodology used to derive the covariance matrix associated with the multivariate normal pdf based on

random and systematic uncertainties is examined, and a procedure used to estimate this covariance

matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct

approximate 95% confidence constant probability contours associated with comparison error results for

a practical example. In addition, the example is used to show the drawbacks of using a first-order

sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to

show the connection between the noise level of the validation exercise calculated using multivariate

and univariate statistics.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

While dealing with the issues involved in full-scale V&V
exercises, the reason for simulation in the first place is easily
forgotten. The purpose of a model is to simulate real world physical
processes which govern the quantities being studied in hopes that
insight will be gained regarding the behavior of such quantities. If
experimental results existed or were easily obtained for every
possible situation, there would be no need for these simulations.
Moreover, many times, experimentation is not feasible at the
highest level due to lack of funds, security reasons, or simply due to
lack of complete understanding of the physics involved. However,
the ability to predict physical processes approaching the level of
complexity of the quantity of interest builds confidence in a
model’s ability to make predictions at the highest level of interest.

Obviously, the ability of a model to make predictions at the highest
level depends heavily on the complexity of the model (i.e. what are
the modeling assumptions). The author’s experience has shown
that many models being used in engineering are located at opposite
ends of the modeling spectrum from simple to complex models.
These two types are as follows:

(1) Simple models based on many simplifying assumptions used to

simulate very specific cases. These models are useful in
studying slight variations of some relatively specific quantity
of interest. However, they may not be reliable in predicting
quantities outside the specific case or set of assumptions.

(2) Extremely complex models used to fully model complex physical

phenomena. This type of model is usually computationally
expensive but may be used to study a wide variety of
quantities of interest with some level of confidence.

As computational power increases, so does the ability to
fully resolve the complex physical phenomena associated
with quantities of interest at the highest level (Type 2 models).
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Our increasing ability to model real world quantities at the
highest level of complexity may decrease the need for experi-
mental data to validate these quantities in the future. However,
Type 1 models are still prevalent in the engineering community.

As stated earlier, Type 1 models are used to examine specific
cases under simplifying assumptions. Often times, these simplify-
ing assumptions greatly affect the uncertainty estimates asso-
ciated with the model inputs or experimentally measured
variables. For example, it is common to assume constant fluid
properties when a temperature dependence is needed. This
simplifying assumption results in the need for a larger uncertainty
estimate associated with the fluid properties. In some instances,
this increases the possibility of nonlinear local sensitivity
coefficients within the model input uncertainty bands. In many
cases, the output(s) of interest (i.e. experimental/ simulation/
comparison error results) may be assumed to follow a univariate/
multivariate normal distribution based on the Central Limit
Theorem. In these cases, the noise level of multiple realizations
of the outputs of interest may be described by the multivariate
normal probability density function (pdf). However, this distribu-
tion may not be correctly defined using the traditional linear
propagation of errors approach because of nonlinear local
sensitivities. In these cases, sampling methodologies such as
Monte Carlo analysis are useful. Clearly there is a desperate need
for standardized validation procedures which can be used in these
situations. There exist several quantitative validation metrics in
the literature that provide methodologies to estimate the error
associated with modeling assumptions provided that benchmark
experimental data exists at similar conditions to the reality of
interest being modeled [1–3]. In the following paper, an end-to-
end validation example using a multivariate first-order sensitivity
analysis and Monte Carlo analysis is performed and discussed
using both univariate and multivariate statistics. This example
examines the validity of a single-zone combustion model used to
simulate the electrical output of a natural gas internal combustion
engine/generator set. This is a key example of a Type 1 model
commonly used to predict different quantities of interest for a
specific case and set of simplifying assumptions [4–7].

2. Experimental setup

Of course, experimental data lays the foundation upon which
we can begin to build a V&V exercise. A schematic of the
experimental apparatus is presented as Fig. 1. The engine/
generator set is a 1.5 L natural gas internal combustion engine
connected to a 15 kW generator. This engine/generator set was
modified in order to recover waste heat from the coolant jacket
and exhaust gases. Modifications include: removal of the
thermostat used to control the coolant flow, replacement of the
conventional belt-driven radiator fan with an electric fan, and
the addition of instrumentation which is described later in this
paper.

The engine was operated at a constant speed in order to follow
an electrical load; therefore, the fuel input was constantly

throttled to meet these requirements. The engine specifications
are presented as Table 1.

Each instrument used in the experimentation was either
calibrated by the manufacturer or in-house. Calibration sheets
were provided for cases where calibrations were made by the
manufacturer of the instrument. The natural gas flowmeter is a
Flocat LA10 laminar flow element device which uses the pressure
and viscosity of the natural gas in the laminar region to produce a
linear 4–20 mA output. All flowmeters were calibrated by the
manufacturer over a prescribed range similar to the design test
conditions. The total power produced by the generator was
measured using a transducer capable of measuring up to
100,000 W.

3. Experimental procedure and results

The objective of this experiment was to vary the natural gas
flowrate on the engine/generator set in order to monitor the
power output. This procedure was accomplished by simply
incrementing the load on the generator from approximately
2–11 kW using the 0–15 kW power transducer to monitor the
process. The experimental results for the total electrical power
output are presented in Fig. 2. Fig. 2 shows that in order to vary
the electrical output of the generator from approximately
2–11 kW, the fuel flowrate was varied from approximately
1.0–2.7 ft3/min.

4. Experimental uncertainty analysis

The uncertainty analysis presented in this section was
conducted according to the American Society of Mechanical
Engineers Performance Test Code 19.1 [8]. Using this methodo-
logy, the standard uncertainty is equivalent to half the uncertainty
as presented in Coleman and Steele [9] at the 95% confidence
level. The standard uncertainty in a result is shown using the
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Fig. 1. Schematic of the engine/generator set.

Table 1
Engine characteristics.

Type In-line OHV, SOHC

Number of cylinders 4

Combustion chamber Semi spherical type

Total displacement 1468 cm3

Cylinder bore 75.5 mm

Piston stroke 82.0 mm

Connecting rod length 131 mm

Compression ratio 9.0

Speed 1800 RPM

Valve timing

Intake opening BTDC 141

Intake closing ABDC 481

Exhaust opening BBDC 551

Exhaust closing ATDC 131

Fuel injection BTDC 351

Exhaust closing ATDC 131
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