Accepted Manuscript

Highly efficien betanin dye based ZnO and ZnO/Au Schottky barrier solar cell

Aparna Thankappan, S. Divya, Anju K. Augustine, C. P. Girijavallaban, P. Radhakrishnan, Sheenu Thomas, V.P.N. Nampoori

PII: S0040-6090(15)00268-0 DOI: doi: 10.1016/j.tsf.2015.03.052

Reference: TSF 34210

To appear in: Thin Solid Films

Received date: 7 May 2014 Revised date: 20 March 2015 Accepted date: 23 March 2015

Please cite this article as: Aparna Thankappan, S. Divya, Anju K. Augustine, C.P. Girijavallaban, P. Radhakrishnan, Sheenu Thomas, V.P.N. Nampoori, Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell, *Thin Solid Films* (2015), doi: 10.1016/j.tsf.2015.03.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CEPTED MANU

Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell

Aparna Thankappan^{1, 2*},S. Divya¹, Anju K Augustine¹, C.P Girijavallaban¹.

P. Radhakrishnan ¹, Sheenu Thomas ¹, V.P.N. Nampoori ¹

¹International School of Photonics (ISP), Cochin University of Science and Technology

²Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and

Technology, Kochi, India

Phone: 0091-484-2575848, Fax: 0091-484-2576714

*aparna.subhash@gmail.com

Abstract:

Performance of dye sensitized solar cells based on betanin natural dye from red beets with various

nanostructured photoanodes on transparent conducting glass has been investigated. In four different

electrolyte system cell efficiency of 2.99% and overall photon to current conversion efficiency of 20

% were achieved using ZnO nanosheet electrode with iodide based electrolyte in acetonitrile solution.

To enhance solar harvesting in organic solar cells, uniform sized metal nanoparticles (gold (Au) of ~8

nm) synthesized via microwave irradiation method were incorporated into the device consisting of

ZnO. Enhanced power conversion efficiency of 1.71 % was achieved with ZnO/Au nanocomposite

compared to the 0.868 % efficiency of the bare ZnO nanosheet cell with ferrocene based electrolyte.

Keywords: betanin

Introduction

Since Grätzel et al. in 1991 developed a type of solar cells, viz. dye-sensitized solar cells (DSSCs) [1];

they have drawn considerable attention due to their several attractive properties like DSSC's an

environmental friendly and excellent low-cost alternative to conventional inorganic photovoltaic

devices. A typical DSSC consists of a redox electrolyte sandwiched between a working electrode and

a counter electrode. Platinum film is widely used in fabricating a high performance DSSC since it has

good catalytic activity. In these systems a semiconductor film is sensitized with a monolayer of dye

molecules. Photo excitation takes place in the dye molecules, and fast electron transfer occurs through

1

Download English Version:

https://daneshyari.com/en/article/8034154

Download Persian Version:

https://daneshyari.com/article/8034154

<u>Daneshyari.com</u>