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a b s t r a c t

The paper starts giving the main results that allow a sensitivity analysis to be performed in a general

optimization problem, including sensitivities of the objective function, the primal and the dual variables

with respect to data. In particular, general results are given for non-linear programming, and closed

formulas for linear programming problems are supplied. Next, the methods are applied to a collection of

civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite

breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems

and a slope stability problem is used to illustrate the methods.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with sensitivity analysis. Sensitivity analysis
discusses ‘‘how’’ and ‘‘how much’’ changes in the parameters of an
optimization problem modify the optimal objective function value
and the point where the optimum is attained (see [1]).

Today, it is not enough to give users the solutions to their
problems. In addition, they require knowledge of how these
solutions depend on data and/or assumptions. Therefore, data
analysts must be able to supply the sensitivity of their conclusions
to model and data. Sensitivity analysis allows the analyst to assess
the effects of changes in the data values, to detect outliers or
wrong data, to define testing strategies, to increase the reliability,
to optimize resources, reduce costs, etc.

Sensitivity analysis increases the confidence in the model and
its predictions, by providing an understanding of how the model
responds to changes in the inputs. Adding a sensitivity analysis to
a study means adding extra quality to it.

Sensitivity analysis is not a standard procedure, however, it is
very useful to (a) the designer, who can know which data values
are the most influential on the design, (b) to the builder, who can
know how changes in the material properties or the prices
influence the total reliability or the cost of the work being
designed, and (c) to the code maker, who can know the costs and
reliability implications associated with changes in the safety

factors or failure probabilities. The methodology proposed below
is very simple, efficient and allows all the sensitivities to be
calculated simultaneously. At the same time it is the natural way
of evaluating sensitivities when optimization procedures are
present.

The paper is structured as follows. In Section 2 the statement
of optimization problems and the conditions to be satisfied are
presented. Section 3 gives the formula to get sentivities with
respect to the objective function. In Section 4, a general method
for deriving all possible sensitivities is given. Section 5 deals with
some examples and the interpretation of the sensitivity results. In
Section 6 the methodology is extended to calculus of variations,
and finally, Section 7 provides some relevant conclusions.

2. Statement of the problem

Consider the following primal non-linear programming pro-
blem (NLPP):

Minimize
x

zP ¼ f ðx; aÞ (1)

subject to

hðx; aÞ ¼ b : k, (2)

gðx; aÞpc : l, (3)

where f : Rn � Rp ! R, h:Rn � Rp ! R‘ , g:Rn � Rp ! Rm with
hðx; aÞ ¼ ðh1ðx; aÞ; . . . ;h‘ðx; aÞÞ

T, gðx; aÞ ¼ ðg1ðx; aÞ; . . . ; gmðx; aÞÞ
T are

regular enough for the mathematical developments to be valid
over the feasible region SðaÞ ¼ fxjhðx; aÞ ¼ b; gðx; aÞpcg, f ; h; g 2 C2,
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and k and l are the vectors of dual variables. It is also assumed
that the problem (1)–(3) has an optimum at x�.

Any primal problem P, as that stated in (1)–(3), has an
associated dual problem D, which is defined as

Maximize
k;l

zD ¼ Inf
x

Lðx; k; l; a; b; cÞ (4)

subject to

lX0, (5)

where

Lðx; k; l; a; b; cÞ ¼ f ðx; aÞ þ kTðhðx; aÞ � bÞ

þ lTðgðx; aÞ � cÞ (6)

is the Lagrangian function associated with the primal problem
(1)–(3), and k and l, the dual variables, are vectors of dimensions ‘
and m, respectively. Note that only the dual variables (l in this
case) associated with the inequality constraints (gðxÞ in this case),
must be non-negative.

Given some regularity conditions on local convexity (see [2,3]),
if the primal problem (1)–(3) has a locally optimal solution x�, the
dual problem (4)–(6) also has a locally optimal solution ðk�; l�Þ,
and the optimal values of the objective functions of both problems
coincide.

2.1. Karush– Kuhn– Tucker conditions

The primal (1)–(3) and the dual (4)–(6) problems, respectively,
can be solved using the Karush–Kuhn–Tucker (KKTCs) first order
necessary conditions (see, for example, [2,4,5]):

rxf ðx�; aÞ þ k�Trxhðx�; aÞ þ l�Trxgðx�; aÞ ¼ 0, (7)

hðx�; aÞ ¼ b, (8)

gðx�; aÞpc, (9)

l�Tðgðx�; aÞ � cÞ ¼ 0, (10)

l�X0, (11)

where x� and ðk�; l�Þ are the primal and dual optimal solutions,
rxf ðx�; aÞ is the gradient (vector of partial derivatives) of
f ðx�; aÞ with respect to x, evaluated at the optimal value x�. The
vectors l� and k� are also called the Kuhn–Tucker multipliers.
Condition (7) says that the gradient of the Lagrangian function
in (6) evaluated at the optimal solution x� must be zero.
Conditions (8)–(9) are called the primal feasibility conditions.
Condition (10) is known as the complementary slackness condition.
Finally, condition (11) requires the non-negativity of the multi-
pliers of the inequality constraints, and is referred to as the dual

feasibility conditions.
Note that in the present analysis the regular non-degenerate

case is only considered, which is the most frequent in real life
applications. To understand the meaning of these assumptions the
following definitions are given.

Definition 1 (Regular point). The solution x� of the optimization
problem (1)–(3) is said to be a regular point of the constraints if
the gradient vectors of the active constraints are linearly
independent.

Definition 2 (Degenerate inequality constraint). An inequality
constraint is said to be degenerate if it is active and the associated
m-multiplier is null.

Once the optimal solution is known, degeneracy can be
identified and possibly eliminated. The degenerate case is
extensively analyzed in [3].

2.2. Some sensitivity analysis questions

When dealing with the optimization problem (1)–(3), the
following questions regarding sensitivity analysis are of interest:

1. What are the local sensitivities of z�P ¼ f ðx�; aÞ to changes in a, b,
and c?

2. What are the local sensitivities of x� to changes in a, b, and c?
3. What are the local sensitivities of k� and l� to changes in a, b,

and c?

The answers to these questions are given in the following sections.

3. Sensitivities of the objective function

Calculating the sensitivities of the objective function with
respect to data is extremely easy using the following theorem
(see [6]).

Theorem 1. Assume that the solution x� of the above optimization

problem is a regular point and that no degenerate inequality

constraints exists. Then, the sensitivity of the objective function with

respect to the parameter a is given by the gradient of the Lagrangian

function

Lðx; k; l; a; b; cÞ ¼ f ðx; aÞ þ kT
ðhðx; aÞ � bÞ þ lTðgðx; aÞ � cÞ, (12)

with respect to a evaluated at the optimal solution x�; k�, and l�, i.e.

qz�P
qa
¼ raLðx

�; k�;l�; a; b; cÞ. (13)

Note that this theorem is very useful from the practical point of
view because it allows you to know how much the objective
function value z�P changes when parameters a change.

Note that the sensitivities with respect to b and c are their
respective gradients.

Example 1 (Objective function sensitivity with respect to right-hand

side parameters). Consider the optimization problem (1)–(3).
Using Theorem 1, i.e., differentiating (12) with respect to b and c

one obtains:

qf ðx�; aÞ

qbi
¼ �l�i ; i ¼ 1;2; . . . ; ‘;

qf ðx�; aÞ

qcj
¼ �m�j ;

j ¼ 1;2; . . . ;m

i.e., the sensitivities of the optimal objective function value of the
problem (1)–(3) with respect to changes in the terms appearing
on the right-hand side of the constraints are the negative of the
optimal values of the corresponding dual variables.

For this important result to be applicable to practical cases of

sensitivity analysis, the parameters for which the sensitivities are

sought must appear on the right-hand side of the primal problem

constraints.

At this point the reader can ask him/herself and what about
parameters not satisfying this condition, a for example? The
answer to this question is given in the following example.

Example 2 (A practical method for obtaining all the sensitivities of

the objective function). In this example it is shown how the duality
methods can be applied to derive the objective function
sensitivities in a straightforward manner. The basic idea is simple.
Assume that we desire to know the sensitivity of the objective
function to changes in some data values. If we convert the data
into artificial variables and set them, by means of constraints, to
their actual values, we obtain a problem that is equivalent to the
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