Accepted Manuscript

In-Situ X-ray Diffraction Analysis of the Recrystallization Process in Cu₂ZnSnS₄ Nano Particles Synthesized by Hot-Injection

Marco Brandl, Rameez Ahmad, Monica Distaso, Hamed Azimi, Yi Hou, Wolfgang Peukert, Christoph J. Brabec, Rainer Hock

PII: S0040-6090(14)01048-7 DOI: doi: 10.1016/j.tsf.2014.10.077

Reference: TSF 33841

To appear in: Thin Solid Films

Please cite this article as: Marco Brandl, Rameez Ahmad, Monica Distaso, Hamed Azimi, Yi Hou, Wolfgang Peukert, Christoph J. Brabec, Rainer Hock, In-Situ X-ray Diffraction Analysis of the Recrystallization Process in Cu₂ZnSnS₄ Nano Particles Synthesized by Hot-Injection, *Thin Solid Films* (2014), doi: 10.1016/j.tsf.2014.10.077

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

In-Situ X-ray Diffraction Analysis of the Recrystallization Process in Cu₂ZnSnS₄ Nano Particles Synthesized by Hot-Injection

Marco Brandl¹, Rameez Ahmad², Monica Distaso², Hamed Azimi³, Yi Hou³, Wolfgang Peukert², Christoph J. Brabec³, Rainer Hock¹

- 1) Chair for Crystallography and Structural Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- 2) Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstr. 4, 91058 Erlangen, Germany
- 3) Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen, Germany

Abstract

Kesterite Cu₂ZnSnS₄ (CZTS) is a promising material for thin film solar cell applications. The biggest advantages of this compound lie in the abundancy and non-toxicity of the contained elements. Low temperature hot injection synthesis can provide an economic way to produce CZTS nano particles for application in solution processed solar cells. Powder X-ray diffraction (PXRD) measurements on the assynthesised particles suggest that the crystal structure is cubic and can be best described as sphalerite-like. This means that the cations in the CZTS are statistically distributed on the cation sites of the crystal lattice rather than well-ordered like in the tetragonal kesterite structure. An in-situ PXRD measurement while annealing the particles up to 550° C revealed a recrystallization process that transforms the structure from cubic to tetragonal meaning an ordering of the cations.

1. Introduction

In recent research for thin film photovoltaics, the chalcogenide material Cu₂ZnSnS₄ (CZTS) has <u>attracted interest</u> as a potential future absorber material in photovoltaics.

Download English Version:

https://daneshyari.com/en/article/8034419

Download Persian Version:

https://daneshyari.com/article/8034419

<u>Daneshyari.com</u>