Accepted Manuscript

Effect of resonant tunneling on electroluminescence in nc-Si/SiO $_2$ multilayers-based p-i-n structure

D.Y. Chen, Y. Sun, Y.Y. Wang, Y.J. He, G. Zhang

PII: S0040-6090(14)01294-2 DOI: doi: 10.1016/j.tsf.2014.12.035

Reference: TSF 33999

To appear in: Thin Solid Films

Received date: 4 June 2014
Revised date: 1 November 2014
Accepted date: 19 December 2014

Please cite this article as: D.Y. Chen, Y. Sun, Y.Y. Wang, Y.J. He, G. Zhang, Effect of resonant tunneling on electroluminescence in nc-Si/SiO₂ multilayers-based p-i-n structure, *Thin Solid Films* (2014), doi: 10.1016/j.tsf.2014.12.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of resonant tunneling on electroluminescence in nc-Si/SiO₂ multilayers-based p-i-n structure

D. Y. Chen^{1,2*}, Y. Sun¹, Y. Y. Wang¹, Y. J. He¹, G. Zhang¹

^{1*} Nanjing University of posts and Telecommunications, Nanjing 210046, China

²Nanjing National Laboratory of Microstructures and Key Laboratory of Advanced Photonic and Electronic materials, Department of Physics, Nanjing University, Nanjing 210093, China

chendy@njupt.edu.cn

tel: +86-18936005695

Abstract

P-i-n structures with SiO₂/nc-Si/SiO₂ multilayers as intrinsic layer were prepared in conventional plasma enhanced chemical vapor deposition system. Their carrier transport and electroluminescence properties were investigated. Two resonant tunneling related current peaks with current dropping gradually under forward bias were observed in the current voltage curve. Non-uniformity of the interfaces might be in responsible for the gradually dropping of the current. Electroluminescence intensity of the device under bias of 7 V which is near the resonant tunneling peak voltage of 7.2 V was weaker than that under 6.5 V. According to the Gaussian fitting results of the spectra, the intensity of the sub-peak of 650 nm originating from recombination of injected electrons and holes was decreased the most. When resonant tunneling conditions are met, it might be that most of injected electrons participate in resonant tunneling and fewer in Pool-Frenkel tunneling which is the main carrier transport mechanism to contribute to electroluminescence intensity.

Keywords: resonant tunneling; electroluminescence; SiO₂/nc-Si/SiO₂ multilayers; Poole-Frenkel tunneling;

1. Introductions

Resonant tunneling has been reported and studied extensively in GaAs/AlGaAs [1-3], Si/SiGe [4-5], single-crystalline-Si/amorphous-SiO₂ system [6-7], nc-Si embedded in dielectric matrices such as SiO_2 or SiNx [8-14]. And SiO_2 /nc-Si/SiO₂ system has some advantages such as process compatibility with microelectronic technology, higher recombination possibility for the small distance between wave functions of electrons and holes than that in bulk silicon, and so on.

Download English Version:

https://daneshyari.com/en/article/8034703

Download Persian Version:

https://daneshyari.com/article/8034703

Daneshyari.com