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Ananalytical expression is obtained for the pressure distance product parameter that defines the pressure depen-
dence of the deposition rate of sputtered atoms in theKeller–Simmons formula. The generalizedKeller–Simmons
formula is proposed, which can be used in the casewhen the 1D approach is not suitable for the simulation of the
flux of sputtered atoms to a substrate. The generalized Keller–Simmons formula using the pressure distance
product derived from the analytical expression allows one to simulate the pressure dependence of the deposition
rate of sputtered atoms for different target materials and to simulate the chemical composition of a multicompo-
nent film at different pressures and distances from a compound target to the substrate. Results of simulations
using the generalized Keller–Simmons formula are in good agreement with the experiment.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Magnetron sputtering systems are widely used for thin film deposi-
tion [1–3]. Characteristics of films depend on many parameters of the
deposition process, especially the energy of sputtered atoms that
reach the substrate [1] and the angular distribution of sputtered atoms
on the substrate [4,5]. In the case of a multicomponent target used for
the deposition of a multicomponent film, the film's characteristics
significantly depend on the chemical composition of the film [6,7].
Changing the pressure or a target–substrate distance results in a change
of the number of collisions of sputtered atoms with gas atoms. The
collisions change the energy and path of the sputtered atoms and thus
change the energy, the angle of incidence and the deposition of
sputtered atoms on the substrate. The change of the deposition rate
due to collisions will be different for sputtered atoms with different
masses. This is why the content of different components in the film
can be controlled by changing the pressure or the target–substrate
distance.

Exact modeling of the transport of sputtered atoms in a magnetron
discharge should include accurate modeling of the energy and angular
distributions of atoms sputtered from the target. These distributions
depend on a target and on the energy of plasma ions bombarding the
target [8]. Experimental data of the energy and angular distributions
of sputtered atoms do not always exist. Sometimes, in Monte Carlo
simulations, these distributions are estimated using specialized
software such as the freeware software SRIM or TRIM, see, e.g., [9].
More frequently, the energy and angular distributions of sputtered

atoms in Monte Carlo simulations are defined by simple functions. The
energy distribution function of the sputtered atoms is frequently de-
fined by the Thompson energy distribution [10] or some of its modifica-
tions [11–13]. The angular distribution function of the sputtered atoms
is defined either by a cosine distribution [11] or a cosn distribution [12].
According to [11–13], such approaches provide a good correlation
between simulations and the experiment. Although these simplified
approaches can be used in the modeling, the Monte Carlo simulation
is, as a rule, time consuming.

To have an algorithm for fast estimation of the pressure effect on the
deposition rate, we need a physically approved analytical expression for
the simulation of the deposition rate of sputtered atoms. Magnetron
sputtering systems are characterized by small enough pressures so
that fluxes of both thermalized and fast non-thermalized sputtered
atoms to the substrate should be taken into account in the simulation
of the deposition rate. Such an analytical expression was initially
proposed by Keller and Simmons [14] in the following form:

Φ ¼ Φ0
3λ
2d

1− exp − 2d
3λ

� �� �

where Φ0 is the flux of atoms sputtered from a target, Φ is the flux of
atoms deposited on a substrate, d is the target–substrate distance and
λ is the mean free path of sputtered atoms in a discharge. The pressure
dependence in the equation is governed by the mean free path that is
inversely proportional to the discharge gas concentration. It should be
noted that the Keller–Simmons formula was obtained in [14] using a
1D approach, which implies that the target diameter is significantly
larger than the target–substrate distance. The Keller–Simmons formula
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can be written in another form, see, e.g., [15]:

Φ ¼ Φ0
pdð Þ0
pd

1− exp − pd
pdð Þ0

� �� �
ð1Þ

where p is the pressure in a deposition chamber and (pd)0 is the charac-
teristic pressure–distance product. In many publications [15–22], it is
shown that experimental pressure dependencies of the deposition
rate are well reproduced by the Keller–Simmons formula (Eq. (1)).
However, the parameter (pd)0 introduced in Eq. (1) is initially unknown
and is usually considered as a fitting parameter. In [15–17], it is shown
that the parameter (pd)0 of Eq. (1) depends on the target material,
type of gas and sputtering power. According to Palmero [22], the (pd)0
parameter can be treated in the form:

pdð Þ0 ¼ pΛ ð2Þ

where Λ is the thermalization distance for sputtered atoms.
The dependence of (pd)0 on sputtering power according to [16,22] is

caused by the rarefaction effect resulting from the heating of the gas in
the process of the thermalization of sputtered atoms. In the case of high
power deposition, the increase of the gas temperature can be significant
[12,16]. The accurate modeling of the transport of sputtered atoms
under such conditions should be self-consistent, including modeling of
the rarefaction effect [12]. Experiments performed with different target
materials [16] show that at small magnetron powers the gas heating
caused by the degradation of energy of sputtered atoms is not signifi-
cant. Thus, the results of simulating the transport of sputtered atoms
using the initial gas temperature will be reliable for the case of low
power deposition.

In this paper, we restrict our considerations only to the case of low
power deposition. We propose an analytical expression of (pd)0
through the characteristics of sputtered and gas atoms at a given gas
temperature. The knowledge of the (pd)0 parameter will allow one to
make estimations of the pressure effect on a deposition rate without
preliminary experimental investigations. It also gives one an ability to
estimate the parameters p and d at which sputtered atoms deposited
on the substrate will be mainly non-thermal. In the case of a multicom-
ponent film, the knowledge of (pd)0 parameters for different compo-
nents gives us the ability to estimate the effect of the pressure and
the target–substrate distance on the chemical composition of the film.
The generalized Keller–Simmons formula will be proposed in the
paper to be used in the case when the 1D approach is not suitable for
the simulation of the flux of sputtered atoms to a substrate.

2. Theory

In the beginning of this section, our consideration will be confined
to the 1D approach corresponding to Eq. (1). Later on, results will be
generalized to more complex geometry configurations where the 1D
approach is not accurate. According to Eq. (2), the parameter (pd)0 of
the Keller–Simmons formula (Eq. (1)) can be defined through the
thermalization length Λ, which is the distance from the target surface
to a position where the sputtered atoms become thermal due to the
degradation of their energy in collisions with gas atoms. The average
number of elastic collisions required for the thermalization of sputtered
atoms was estimated in [22] through (pd)0 parameters obtained by
fitting the Keller–Simmons formula (Eq. (1)) with experimental depen-
dencies of Φ(p) from [15–17]. The estimated numbers of elastic colli-
sions for different target materials were compared in [22] with the
analytical results of [23]. The comparison showed a good correlation
of estimated and analytical results. Let us note that in [23] three differ-
ent approaches were considered to define the number of collisions
required for the thermalization, but in [22] it is not specified which of
the approaches was used for the comparative analysis. By comparing
Fig. 3 of [22] and Fig. 4 of [23], one can conclude that the number of

collisions defined by Eq. (8) of [23] that take into account the concept
of persistence of velocity after collisions [24] was used in the compari-
sons of [22]. In essence, the results of [22] demonstrate that using the
thermalization distance D3, introduced by Eq. (11) of [23], as the
thermalization length Λ in Eq. (2) allows one to reproduce the trend
of the (pd)0 parameter on the mass ratio of sputtered atoms to the
gas atoms.

Detailed analysis shows that the analytical results of [23] are obtain-
ed using fairly rough approaches and the thermalization distancedefini-
tion should be corrected. In [25], the transport of sputtered atoms was
simulated by the Monte Carlo method in a wide range of variation of
energies of sputtered atoms and mass ratios of sputtered atoms to the
gas atoms. The thermalization distances h calculated by means of the
Monte Carlo simulations were fitted in [25] by the following relation:

h ¼ λ0 � m1=m2ð Þ0:69 0:39þ 0:23 ln E0=Ethð Þ½ � ð3Þ

where E0 is the initial energy of sputtered atoms, Eth is the thermal
energy of gas atoms given by Eth = 3 kT / 2, where k is the Boltzmann
constant, T is the gas temperature, m1 is the mass of the sputtered
atom, m2 is the mass of the gas atom, and λ0 = 1 / (nσ), where n
is the discharge gas concentration and σ is the cross section of elastic
scattering of the sputtered atom by the gas atom.

Approaches used in [25] provide more accurate modeling of the
sputtered atoms transport compared with the approaches used in [23].
The stochastic nature of the collisions of sputtered atoms with gas
atoms is taken into account in [25] in contrast to the approaches of
[23], where the energy of a sputtered atom after each elastic collision
is simulated through the average energy loss. Unlike the approach of
atoms sputtered normal to the target surface used in [23], a cosine-
angle distribution of atoms sputtered from the target surface is consid-
ered in [25]. A Maxwellian energy distribution of gas atoms is taken
into account in [25] in contrast to immobile gas atoms considered
in [23]. Let us note that Monte Carlo simulations show that the motion
of gas atoms can significantly affect the transport of sputtered atoms
[26]. The thermalization length is calculated in [23] using the following
mean free path λ of sputtered atoms between subsequent elastic
collisions:

λ ¼ λ0

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm1=m2

p
: ð4Þ

We should emphasize that, according to [24,27], Eq. (4) corresponds
to themean free path of atoms that are already thermalized. In the case
of fast, non-thermalized atoms, the mean free path of the atoms
depends on their velocity [24,27]. The convenient form of such depen-
dence expressed through the energy of atoms E is presented in [25] by
the following equation:

λ ¼ λ0 1þ 1
2ω

� �
erf

ffiffiffiffi
ω

p� �þ e−ωffiffiffiffiffiffiffi
πω

p
� �−1

ð5Þ

where erf is the error function [28], ω ¼ 3
2

E
Eth

m2
m1
. It is seen from Eq. (5)

that at high energies of sputtered atoms corresponding to ω ≫ 1, the
mean free path λ will be close to λ0 and it will be higher than the one
defined by Eq. (4), especially in the case of m1 N m2. The dependence
of the mean free path λ of sputtered atoms from their energy E which
changes due to collisions is taken into account in [25]. The cross section
of elastic scattering in [25], as well as in [23], was derived through the
radii of the sputtered and the gas atoms by the relation σ= π (r1 + r2)2.

The thermalization length h defined by Eq. (3) and the thermaliza-
tion length D3 defined by Eq. (11) of [23] are compared in Fig. 1 for
two different initial energies of sputtered atoms. It is seen that slopes
of the dependencies h(m2/m1) and D3(m2/m1) are different. The ratio
of masses m2/m1 at which the dependencies agree well changes with
the change of initial energy of the sputtered atoms. Approaches used
in [25] provide a more realistic description of the transport of sputtered
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