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A continuum based approach is presented for buckling analysis of single layer graphene sheets with skew shape.
The straight-sided quadrilateral graphene field ismapped into a square domain in the computational space using
a four-node graphene element. Then, the governing equations and boundary conditions of the graphene
are transformed from the physical domain into a square computational domain by using the geometric
transformation. Some numerical examples related to buckling loads of skew shaped graphene are presented
for different geometric parameters. Results related to buckling loads of the single layer graphene with skew
shape have been presented which can serve as benchmark solutions for future investigations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The extra-ordinary mechanical, chemical, thermal and electrical
properties of carbon based nanostructures have led to a wide interest
in their potential applications in microelectro-mechanical system
(MEMS), biomechanics, microcomputers and nanocomposites. In the
past five years great deals of studies have been devoted on mechanical
properties of graphene sheets [1–7]. The nanoscaled controlled
experimental studies are very difficult. Also, the molecular dynamic
and atomic simulation approaches are highly computationally expensive.
So, many researchers have used the continuum based techniques for
modeling of nanoscaled structures [8–12]. Arbitrary shaped graphenes
such as skew and rhombic have been widely used in modern industries
such as biomedical devices, nanoelectro mechanical applications,
actuators and sensors. Thus, understanding mechanical behaviors such
as bending and buckling of these elements are an important task for
design stage. While the majority of work on graphene sheets has related
on buckling and vibration of rectangular and circular graphene [11–19],
the buckling analysis of skew shaped graphene has not yet been studied.
In the past ten years continuum models have been widely used for
modeling of nanoscaled structures such asmicro beams andmicro plates,
carbon nanotubes and microtubules [20–27]. In this paper, a geometric
mapping methodology is used for transformation of the skew geometry
[28–33]. Amajor advantage of themethod proposed here for the analysis
of arbitrary-shaped plates is that it does not require anymesh discretion.
Thus, it needs only a few of input data to carry out the computations. The

resulting governing equation for buckling of skew graphene is solved by
numerical method. Some results for elastic buckling values of skew
shaped graphene have been presented which can serve as benchmark
solutions for future investigations in the field of nanomechanics.

2. Discrete singular convolution (DSC)

Singular convolutions (SC) are a special class of mathematical
transformations, which appear in many science and engineering
problems, such as the Hilbert, Abel and Radon transforms [34–37]. In
fact, these transforms are essential to many practical applications, such
as computational electromagnetics, signal and image processing, pattern
recognition, tomography, molecular potential surface generation and
dynamic simulation [38–40]. It is the most convenient way to discuss
the singular convolution in the context of the theory of distributions.
Wei and his co-workers first applied the DSC algorithm to solve solid
and fluid mechanics problem [40–49]. These studies indicate that the
DSC algorithm works very well for numerical solution of the partial
differential equation [50–62]. Furthermore, it is also concluded that the
DSC algorithm has global methods' accuracy and local methods'
flexibility for solving differential equations in applied mechanics. In a
general definition, numerical solutions of differential equations are
formulated by some singular kernels. The mathematical foundation of
the DSC algorithm is the theory of distributions and wavelet analysis.
Consider a distribution, T and η(t) as an element of the space of the
test function. A singular convolution can be defined by [37]

F tð Þ ¼ T � ηð Þ tð Þ ¼ ∫
∞

−∞
T t−xð Þη xð Þdx; ð1Þ
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where T(t−x) is a singular kernel. For example, singular kernels of delta
type [38]

T xð Þ ¼ δ nð Þ xð Þ; n ¼ 0;1;2;…;ð Þ: ð2Þ

Kernel T(x) = δ(x) is important for interpolation of surfaces and
curves, and T(x)= δ(n)(x) for n N 1 is essential for numerically solving
differential equations. With a sufficiently smooth approximation, it is
more effective to consider a discrete singular convolution [39]

Fα tð Þ ¼
X
k

Tα t−xkð Þ f xkð Þ; ð3Þ

where Fα(t) is an approximation to F(t) and {xk} is an appropriate set of
discrete points on which the DSC (3) is well defined. Note that, the
original test function η(x) has been replaced by f(x). This new discrete
expression is suitable for computer realization. The mathematical
property or requirement of f(x) is determined by the approximate
kernel Tα.

2.1. Regularized Shannon's delta (RSD) kernel

Recently, the use of some new kernels and regularizer such as delta
regularizer [40] was proposed to solve applied mechanics problem. The
Shannon's kernel is regularized as

δΔ;σ x−xkð Þ ¼ sin π=Δð Þ x−xkð Þ½ �
π=Δð Þ x−xkð Þ exp − x−xkð Þ2

2σ2

" #
; σ N 0: ð4Þ

where Δ is the grid spacing. It is also known that the truncation error is
very small due to the use of the Gaussian regularizer, the above
formulation given by Eq. (4) is practically and has an essentially
compact support for numerical interpolation. Eq. (4) can also be used
to provide discrete approximations to the singular convolution kernels
of the delta type [41]

f nð Þ xð Þ ≈
XM

k¼−M

δ△ x−xkð Þ f xkð Þ; ð5Þ

where δΔ(x − xk) = Δδα(x − xk) and superscript (n) denotes the
nth-order derivative, and 2 M + 1 is the computational bandwidth
which is centered around x and is usually smaller than the whole
computational domain.

In the DSCmethod, the function f(x) and its derivatives with respect
to the x coordinate at a grid point xi are approximated by a linear sumof
discrete values f(xk) in a narrow bandwidth [x−xM, x+xM]. This can be
expressed as [42]

dn f xð Þ
dxn

����
x¼xi

¼ f nð Þ xð Þ ≈
XM

k¼−M

δ nð Þ
△;σ xi−xkð Þ f xkð Þ; n ¼ 0;1;2;…;ð Þ: ð6Þ

where superscript n denotes the nth-order derivative with respect to x.
The xk is a set of discrete sampling points centered around the point x, σ
is a regularization parameter, Δ is the grid spacing, and 2M+1 is the
computational bandwidth, which is usually smaller than the size of
the computational domain. For example the second order derivative at
x= xi of the DSC kernels for directly given

δ 2ð Þ
△;σ x−xj

� �
¼ d2

dx2
δ△;σ x−xj

� �h i���
x¼xi

; ð7aÞ

The discretized forms of Eq. (7a) can then be expressed as

f 2ð Þ xð Þ ¼ d2 f
dx2

����
x¼xi

≈
XM

k¼−M

δ 2ð Þ
△;σ kΔxNð Þ f iþk; j: ð7bÞ

When the regularized Shannon's kernel (RSK) is used, the detailed
expressions for δΔ,σ(x), δ△,σ

(1) (x), δ△,σ
(2) (x), δ△,σ

(3) (x) and δ△,σ
(4) (x) can be easily

obtained for x1xk. For example, the first- and second-order derivatives
are given as [40–46]

δ 1ð Þ
π=Δ;σ xm−xkð Þ ¼ cos π=Δð Þ x−xkð Þ

x−xkð Þ exp − x−xkð Þ2=2σ2
h i

− sin π=Δð Þ x−xkð Þ
π x−xkð Þ2=Δ exp − x−xkð Þ2=2σ2

h �i

− sin π=Δð Þ x−xkð Þ
πσ2=Δ
� � exp − x−xkð Þ2=2σ2

h �i
ð8Þ

δ 2ð Þ
π=Δ;σ xm−xkð Þ ¼ − π=Δð Þ sin π=Δð Þ x−xkð Þ

x−xkð Þ exp − x−xkð Þ2=2σ2
h i

−2
cos π=Δð Þ x−xkð Þ

x−xkð Þ2 exp − x−xkð Þ2=2σ2
h �i

−2
cos π=Δð Þ x−xkð Þ

σ2 exp − x−xkð Þ2=2σ2
h i

þ2
sin π=Δð Þ x−xkð Þ
π x−xkð Þ2=Δ exp − x−xkð Þ=2σ2

h �i

þ sin π=Δð Þ x−xkð Þ
π x−xkð Þσ2=Δ

exp − x−xkð Þ2=2σ2
h i

þ sin π=Δð Þ x−xkð Þ
πσ4=Δ

x−xkð Þ exp − x−xkð Þ2=2σ2
h �i

:

ð9Þ

2.2. Lagrange delta sequence (LDS) kernel

This kernel for i=0,1,…, N−1 and j=−M,…,M is given by [38–42]

Ri; j xð Þ ¼ ∏
iþM

k¼i−M;k≠iþ j

x−xk
xiþ j−xk

; xi−M ≤ x ≤ xiþM ;

0 otherwise

8<
: ð10Þ

where Wi,j
(n) is the weighting coefficients and these coefficients for the

first derivative can be given as

W 1ð Þ
i; j ¼ R

1ð Þ
i; j ; for i ¼ 0;1;…;N−1 and j ¼ −M;…;M; j≠0; and

ð11aÞ

Wi;0
1ð Þ ¼ −

XM
j¼−M; j≠0

W 1ð Þ
i; j ; for i ¼ 0;1;…;N−1 and j ¼ 0: ð11bÞ

The weighting coefficients for higher order derivatives are given by
[40–43]

W nð Þ
i; j ¼ n W 1ð Þ

i; j W
n−1ð Þ
i; j −

W n−1ð Þ
i; j

xi−xiþ j

� �
2
4

3
5 ð12Þ

for i=0,1,…, N−1 and j=−M,…,M, j≠0, and n=2,3,…,2M,

Wi;0
nð Þ ¼ −

XM
j¼−M; j≠0

W nð Þ
i; j ð13Þ
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