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a  b  s  t  r  a  c  t

A  procedure  to identify  the  imperfection  in  thin  plates  is  proposed  in  this  paper.  The  modified  potential
energy  principle,  which  serves  as  the  theoretical  basis  of the  identification  procedure,  is improved  to allow
for the experimental  measurements  in  static tests.  Several  typical  examples  are  studied  to illustrate  the
effectiveness  of the  procedure.
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1. Introduction

Imperfection identification is often of foremost concern for
many structural systems in service. Non-destructive load tests are
usually conducted to determine the unknown parameters for iden-
tification of the imperfections.

As a major class of techniques that has the merit of
uninterrupted operation of systems, dynamic damage identi-
fication methods have been developed for many years (for
example, [1,10,13,15,16,26,20]). Among them, some are exclu-
sively proposed to detect the imperfections in thin plates (see
[11,18,19]). It has been recognized that the major deficiency of
dynamic identification methods is the presence of uncertain-
ties in masses and damping. In contrast, static identification
procedures can bypass this deficiency and enjoy easy implemen-
tation for simple structural systems. Existing methods based on
the static measurements are mostly represented as constrained
non-convex optimization problems [2,3,5,12,17,21]. Nevertheless,
these static identification procedures have the disadvantage of
lack of test repeatability or generality for various structural
systems. In addition, neither existing dynamic nor static identi-
fication procedures give analytical expressions of identification
parameters.

In the recent years, Caddemi and his coworkers’ have conducted
research on damage identification of beams by static tests ([4,6–9]),
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standing out due to the explicit expressions of the parameters to
be identified. In particular, in the work of Caddemi and Di Paola
[6], a modified version of the Hu-Washizu variational principle
was introduced to identify the imperfections in beams, shedding
light on the development of a general procedure to obtain closed-
form solutions of different identification problems according to the
principle.

In this paper, attention is concentrated on the identification
of imperfections in thin plates. The static response of a thin
plate is governed by a fourth-order partial differential equation,
being much more difficult than the beam problem. Alterna-
tively, displacement-based approximate methods, such as the
Ritz method, are usually used to acquire approximate analyti-
cal solutions, featuring concision and efficiency. However, in the
above-mentioned identification procedure based on Hu-Washizu
principle, the expressions of internal forces (or stresses) in the elas-
tic body usually need to be assumed, which is not an easy matter for
thin plates. Therefore, the modified potential energy principle, with
the independent variables of displacements and tractions on the
constrained boundary, is used in this paper to obtain displacement-
based approximate analytical solutions, avoiding the variables of
internal forces.

An improved version of modified potential energy functional is
established for the identification purpose, allowing for the response
measurements as the additional fictitious constraints. Expressions
of the fictitious reactions, as functions of imperfection parame-
ters to be identified, are derived from the stationary conditions
of the functional, and nullification of these reactions leads to the
identification of the unknown structural parameters.

http://dx.doi.org/10.1016/j.mechrescom.2016.01.001
0093-6413/© 2016 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.mechrescom.2016.01.001
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2016.01.001&domain=pdf
mailto:gmw13@mails.tsinghua.edu.cn
dx.doi.org/10.1016/j.mechrescom.2016.01.001


M. Guo, H. Zhong / Mechanics Research Communications 72 (2016) 16–23 17

The framework proposed in this paper is applicable to different
cases of imperfections in thin plates, providing approximate ana-
lytical solutions to the identification problems. The procedure is
exemplified by three typical applications, showing the generality
in a class of inverse problems.

2. The modified potential energy principle

In this section, the modified potential energy principle [22] is
introduced as the basic theory for the identification procedure,
especially for thin plates. An improved version of the principle is
established for the purpose of identification, accounting for the
response measurements via experimental tests as fictitious pre-
scribed displacements.

2.1. The modified potential energy principle for linear elasticity

An elastic body in the orthogonal Cartesian coordinate sys-
tem xi (i = 1, 2, 3), occupies a domain � bounded by the surface
S. Denoted by Su, the constrained part of S has prescribed displace-
ment components ui = ui (i = 1, 2, 3); while the complementary
part of Su, where the tractions are given as Ti (i = 1, 2, 3), is denoted
by S� . The well-known principle of minimum potential energy is
given as

�p (ui) =
∫
�

1
2
Dijklui,juk,ld� −

∫
�

f iuid� −
∫
S�

T iuidS = min,

subject to ui = ui on Su ,

(1)

in which f i (i = 1, 2, 3) are the assigned body force components,
and Dijkl, the Hooke stiffness tensor for isotropic elastic material, is
positive definite.

With the Lagrange multiplier method, one can relax the con-
straints ui = ui on Su by introducing Lagrange multipliers and
construct an augmented functional, termed the modified potential
energy functional

�mp (ui, �i) = �p (ui) −
∫
Su

�i (ui − ui) dS. (2)

The stationary condition of �mp gives

ı�mp = −
∫
�

[(
Dijkluk,l

)
,j + f i

]
ıuid�

+
∫
S�

(
Dijkluk,lnj − Ti

)
ıuidS

+
∫
Su

(
Dijkluk,lnj − �i

)
ıuidS−

∫
Su

(ui − ui) ı�idS = 0, (3)

where integration by parts and Gauss theorem are applied. In the
above derivation, one can identify the Euler equations, i.e. equilib-
rium equations as,(
Dijkluk,l

)
,j + f i = 0 in � , (4)

and the boundary conditions as

Dijkluk,jnj = Ti on S� , (5)

ui = ui , �i = Dijkluk,lnj on Su . (6)

The three Lagrange multipliers are identified as the boundary trac-
tions Ti on Su, thus the modified potential energy functional can be
rewritten as

�mp

(
ui, Ti

∣∣
Su

)
= �p (ui) −

∫
Su

Ti (ui − ui) dS  , (7)

Fig. 1. The thin plate model.

and the modified potential energy principle can be stated as: The
modified potential energy functional �mp takes stationary value for

true
(
ui, Ti

∣∣
Su

)
.

2.2. The modified potential energy principle for thin plates

Since the present work concentrates on the damage parameter
identification of elastic thin plates, the modified potential func-
tional in Eq. (7) should be rewritten in its formulation for thin
plates.

Consider an isotropic elastic plate in Cartesian coordinate sys-
tem xi (i = 1, 2, 3, {x1, x2, x3} = {x, y, z}), x3 is the coordinate
perpendicular to the mid-surface of the plate, which occupies the
region R bounded with the curve �, as shown in Fig. 1. The deflec-
tion of the plate along the x3 axis is denoted by w. On the clamped
part of �, denoted by �C, the slope angle along the normal direc-
tion w,n is assigned as w,n = w,n; while on �C and the simply
supported part �S, the deflection is prescribed as w = w. Besides,
normal moment Mn and Kirchhoff shear force Vn are assigned as
Mn = Mn, Vn = Vn on the free part �F complementary to �C ∪ �S
(i.e. �C ∪ �S ∪ �F = �), while Mn = Mn on �S. Hence, the modified
potential energy functional is given as

�mp

(
w, Mn

∣∣
�C
, Vn

∣∣
�C∪�S

)

=
∫
R

D

2

[
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2
]

dA

−
∫
R

qwdA −
∫
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Vnwd� −
∫
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Mnw,nd�

−
∫
�C∪�S

Vn (w − w) d� −
∫
�C

Mn (w,n − w,n) d�, (8)

where ˛,  ̌ = 1, 2 and q is the distributed load per unit area normal
to the plate, and the flexural rigidity is defined as D = Eh3/12(1 − �2)
with E, � being the Young’s modulus, Poisson’s ratio of the material
and h being the thickness of the plate. Moreover, Mn and Vn can be

expressed in terms of the deflection w as Mn = −D
(
∂2
w

∂n2 + �∂
2
w

∂s2

)
and Vn = −D

(
∂∇2w
∂n

+ (1 − �) ∂
3
w

∂n∂s2

)
, where n and s indicate the

normal and tangent directions at the boundary of the plate.

2.3. The improved version for the purpose of parameter
identification

In Eq. (8), the flexural stiffness D can be considered to depend on
some structural parameters expressed by a vector ˇ, i.e. D = D(ˇ).
In the solution to a parameter identification problem, one needs to
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