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a  b  s  t  r  a  c  t

Without  ad  hoc assumptions,  a decomposed  theorem  of  a transversely  isotropic  plate  for extensional
deformation  are  derived  and  studied  based  on  transversely  isotropic  elastic  theory.  Firstly,  from  the
Elliott–Lodge  solution  and  Lur’e  method,  the  displacement  and  stress  components  are  obtained  in terms
of  mid-plane  displacements  and  transverse  normal  strain.  Secondly,  the  exact  equations  of  the  plate
are  obtained  under  homogeneous  boundary  conditions.  The  general  stress  state  of  the  plate  consists  of
three  parts:  the generalized  plane-stress  state,  the  shear  state,  and  the  Papkovich–Fadle  state.  At last,  the
decomposed  form  of  a transversely  isotropic  elasticity  plate  for extensional  deformation  is  obtained,  and
the decomposed  theorem  is proven  strictly  for the  first  time.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The general deformation of a plate may  be decomposed into two  parts: anti-symmetric and symmetric [1], and bending deformation
and extensional deformation can be gained, respectively. Gao and Zhao [2] investigate plane problems by using the Papkovich–Neuber
solution and Lur’e method. Based on Gao and Zhao’s work, we extend the refined theory of thick plates to transversely isotropic plates in
this paper.

The method utilized to deduce a 2D theory from a 3D theory directly without ad hoc assumptions was originally introduced by Cheng [1]
for the development of refined plate theories. A refined plate theory consists of three parts: the bi-harmonic equation, the shear equation,
and the transcendental equation. Wang [3–5] extended Cheng’s refined theory to transversely isotropic plates and studied plate and plane
problems. Gao and Zhao [2] obtained the refined theory of thick plates for extensional deformation by using the Papkovich–Neuber solution
and Lur’e method without ad hoc assumptions. Zhao [6] established a refined theory of a transversely isotropic bending plate from the
Elliott–Lodge solution and Lur’e method. However, these theories failed to provide strict proof of the decomposed form of a plate. In recent
years, in accordance with refined theory of plates, several other scholars extended the theory to transversely isotropic thermoporoelastic
beams [7], bi-layer beams for a transversely isotropic body [8], axisymmetric electro-magneto-elastic circular cylinders [9], and so on.

Based on early work, Gregory [10] provided rigorous proof for the decomposed form of isotropic plates. The general stress state of a plate
in decomposed theorem consists of three parts: the interior state, the shear state, and the Papkovich–Fadle state. The proof was derived
in terms of the Papkovich–Fadle eigenfunction expansion of bi-harmonic functions [11,12]. Wang and Zhao [13] directly and concisely
provided new proof that is independent of the Papkovich–Fadle expansion.

Unlike those of plate problems, the equations of extensional deformation problems are well developed in theory and widely utilized
for various engineering problems. Hence, we discuss the extensional deformation problems of transversely isotropic plates and derive a
decomposed theorem in this study. We  provide the decomposed form of a transversely isotropic elasticity plate for extensional defor-
mation and prove the decomposed theorem strictly. In next section, the equations and notations involved are presented. In Section 3,
the displacement and stress expressions of the transversely isotropic elasticity plate for extensional deformation are studied with the
Elliott–Lodge solution and Lur’e method. The exact plate equations under homogeneous boundary conditions are obtained in Section 4,
and the general stress state of the plate consists of three parts: the generalized plane-stress state, the shear state, and the Papkovich–Fadle
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state. The decomposed form of the plate is obtained, and the decomposed theorem is proven strictly in Section 5. The influence of the
Papkovich–Fadle state of the beam is discussed in Section 6.

2. Equations and notations

A homogeneous transversely isotropic plate occupying the domain

 ̋ = {(x1, x2, x3)|(x1, x2) ∈ D, |x3| ≤ h/2}, (1)

where D is the cross-section of the plate and its thickness is h, the x3-axis be perpendicular to the isotropic plane of the medium (x1, x2) in
a Cartesian system (x1, x2, x3).

The constitutive equations for the transversely isotropic body are described to be

⎧⎪⎨
⎪⎩
�11 = C11u1,1 + C12u2,2 + C13u3,3,

�22 = C12u1,1 + C11u2,2 + C13u3,3,

�33 = C13u1,1 + C13u2,2 + C33u3.3,⎧⎪⎨
⎪⎩
�23 = C44(u2,3 + u3,2),

�31 = C44(u3,1 + u1,3),

�12 = C66(u1,2 + u2,1),

(2)

where �11, �22, �33 are normal stresses, �23, �31, �12 are shear stresses, u1, u2, u3 are displacements in the x1, x2 and x3 directions,
respectively. Cij are material constants with C66 = (C11 − C12)/2. In which the symbol, “i” denotes the partial derivative with respect to i.

Let E, G, v be Young’s modulus, shear modules, and Poisson’s ratio in the plane of isotropic, respectively; and let E′, G′, �′ be the transverse
Young’s modulus, shear modules, and Poisson’s ratio, respectively. Then

C11 = E(1 − k�′2)
(1 + �)(1 − v − 2k�′2)

,

C33 = E(1 − �)
k(1 − � − 2k�′2)

,

C44 = G

kg
= E

2kg(1 + �)
,

C12 = E(� + k�′2)
(1 + �)(1 − v − 2k�′2)

,

C31 = �′E
(1 − � − 2k�′2)

,

C66 = G = E

2(1 + �)
,

(3)

where k = E/E′, kg = s20 = G/G′.
The equilibrium equations without body force are

�11,1 + �12,2 + �31,3 = 0,

�12,1 + �22,2 + �23,3 = 0,

�31,1 + �23,2 + �33,3 = 0.

(4)

The expansion of the strain compatibility equations are

ε11,ii + εii,11 − 2ε1i,1i = 0,

ε22,ii + εii,22 − 2ε2i,2i = 0,

ε33,ii + εii,33 − 2ε3i,3i = 0,

ε23,ii + εii,23 − ε2i,3i − ε3i,2i = 0,

ε31,ii + εii,31 − ε3i,1i − ε1i,3i = 0,

ε12,ii + εii,12 − ε1i,2i − ε2i,1i = 0,

(5)

where the similar subscripts express the sum of 1 to 3. And ε11, ε22, ε33 are normal strains, ε23, ε31, ε12 are shear strains.



Download English Version:

https://daneshyari.com/en/article/803593

Download Persian Version:

https://daneshyari.com/article/803593

Daneshyari.com

https://daneshyari.com/en/article/803593
https://daneshyari.com/article/803593
https://daneshyari.com

