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a  b  s  t  r  a  c  t

In  this  paper  we  investigate  the  interplay  between  material  defects  and  flow  localization  in elastoplastic
bars  subjected  to dynamic  tension.  For  that  task,  we  have  developed  a 1D  finite  difference  scheme  within
a  large  deformation  framework  in  which  the  material  is modelled  using  rate-dependent  J2 plasticity.  A
perturbation  of  the initial  yield  stress  is introduced  in each  node  of  the  finite  difference  mesh  to model
localized  material  flaws.  Numerical  computations  are  carried  out within  a wide  spectrum  of  strain  rates
ranging  from  500  s−1 to  2500  s−1. On  the  one  hand,  our calculations  reveal  the  effect  of the material  defects
in  the  necking  process.  On  the  other  hand,  our  results  show  that  the necking  inception,  instead  of  being  a
random  type  process,  is the  deterministic  result  of  the interplay  between  the  mechanical  behaviour  of  the
material  and  the  boundary  conditions.  This  conclusion  agrees  with  the  experimental  evidence  reported
by  Rittel  et al.  [1]  and  Rotbaum  et al. [2].

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Whether dynamic necking in elastoplastic solids is a random
or deterministic process remains as an open question. This issue,
which has triggered critical debates in the Solid Mechanics com-
munity during the last decade, has been typically addressed using
two different uniaxial tensile configurations [3].

On the one hand, we have the radial expansion of ductile rings
[4–6]. The geometric and loading symmetries of this problem nearly
eliminate the effects of wave propagation before the onset of neck-
ing, which reveals the true mechanical properties of the material.
For years, it was accepted that the multiple localization pattern
which precedes fragmentation in the ring expansion test is a ran-
dom process, controlled to a large extent by geometric and material
defects. However, some recent publications [7,8] have raised the
possibility that the localization process becomes deterministic for
sufficiently high expansion velocities. The increase of the inertia
forces with the loading rate helps to regularize the problem and
promotes the emergence of uniform necking patterns which reveal
the deterministic nature of the localization process.

On the other hand, we have the impact testing of linear ten-
sile specimens [9,10]. The sample, initially at rest, is subjected to
a sudden axial velocity which, unlike what happens in the ring
expansion test, leads to the generation of stress waves. It has been
frequently assumed in the literature that, despite the stress waves
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intervention within the specimen, the necking inception in the
impact tensile test is a random process. However, recent experi-
mental works [1,2] suggested that flow localization in the dynamic
tensile test is the deterministic result of the interplay between
material behaviour, specimen geometry and boundary conditions.
In this paper we develop a numerical methodology which sup-
ports such experimental finding. We  carry out computations using
a finite difference model in which material flaws are included. Our
results indicate that wave propagation phenomena control, to a
large extent, flow localization in elastoplastic specimens subjected
to impact tensile loading.

2. Constitutive equations

The material behaviour is described by a hypoelastic-plastic
constitutive model which follows the standard principles of Huber-
Mises plasticity.

The evolution equation for the Kirchhoff stress � is:

�∇ = L : de (1)

where �∇ is the Green–Naghdi objective derivative of the Kirch-
hoff stress tensor. We  have followed the works of Holzapfel [11]
and Sumelka [12], and use the Kirchhoff stress in the formulation
of the constitutive equations. This is considered the most directly
available stress measure when an elastic reference state is consid-
ered. Moreover, the fourth order isotropic elasticity tensor L and
the elastic rate of deformation tensor de are defined as follows:

L = 2GI + �I ⊗ I (2)
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Table 1
Physical constants, elastic parameters and parameters related to the yield stress for
AISI  430 steel [13].

Symbol Property and units Value

�o Initial density (kg/m3), Eqs. (13) and (14) 7740
Cp Specific heat (J/kg K), Eqs. (15) and (28) 460
k  Thermal conductivity (W/m K), Eqs. (15) and (28) 26.1

G  Lamé’s constant (GPa), Eqs. (2), (25), (26) and (27) 75.2
�  Lamé’s constant (GPa), Eq. (2) and (26) 146
E  Young’s modulus (GPa), Eq. (23) 200
�  Poisson’s ratio 0.33

A  Initial yield stress (MPa), Eq. (6) 175.67
B  Work hardening modulus (MPa), Eq. (6) 530.13
h  Work hardening exponent, Eq. (6) 0.167
ε̇ref Reference strain rate (s−1), Eq. (6) 0.01
m  Strain rate sensitivity exponent, Eq. (6) 0.0118
Tref Reference temperature (K), Eq. (6) 300
�  Temperature sensitivity exponent, Eq. (6) 0.51

ˇ  Taylor-Quinney coefficient, Eqs. (15) and (28) 0.9

de = d − dp (3)

where G and � are the Lamé’s constants, I is the fourth order iden-
tity tensor and I is the second order identity tensor. d and dp are
the total and plastic rate of deformation tensors, respectively.

The yield function f is written as:

f = � − �Y = 0 (4)

where the equivalent stress � and the yield stress �Y are defined as
follows:
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where s = � − 1
3 (� : I) I is the deviatoric part of the Kirchhoff stress
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The flow rule is given by:
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The formulation of the constitutive model is completed by
introducing the Kuhn–Tucker loading/unloading complementary
conditions:

ε̇
p ≥ 0, f ≤ 0, ε̇

p
f = 0 (8)

and the consistency condition during plastic loading:

ḟ = 0 (9)

In the calculations of this paper we use the constitutive param-
eters corresponding to the AISI 430 steel [13]. These are given in
Table 1.

3. Governing equations

We  consider a cylindrical bar of initial length L = 6 mm and cross-
section diameter � = 3 mm subjected to dynamic stretching. Within
a 1D analysis we do not need to specify the shape of the cross-
section area, nevertheless we consider that the bar is cylindrical
(to calculate the force in the sample, see Fig. 2), as a typical tensile
specimen. The dimensions of the bar correspond to samples used

in Split Hopkinson Tensile Bar experiments [2,14]. The problem is
posed in one-dimensional form.

The relation between the Eulerian z and the Lagrangian coordi-
nate Z (0 ≤ Z ≤ L) is given by:

z = Z + UZ (10)

where UZ is the displacement along the axial direction. The log-
arithmic strain εZ and strain rate ε̇Z along the axial direction are
given by:

εZ = ln(1 + ∂UZ/∂Z) (11)

ε̇Z = ∂εZ/∂t (12)

The fundamental equations, formulated in Lagrangian coordi-
nates, which govern the loading process are given below.

• Mass conservation:

�0 = �J (13)

where �0 is the initial material density, � is the current density
and J = e(1−2�)εZ is the Jacobian determinant of the deformation
gradient tensor, where � is a material parameter specified in
Section 4.

• Momentum balance in the axial direction:

�00
∂2

UZ

∂t2
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∂Z

(


J
�Z

)
(14)

where 0 and  are the initial and current cross-section areas of
the bar and �Z is the Kirchhoff stress along the axial direction.

• Conservation of energy:

�Cp
∂T

∂t
= k

∂2
T

∂Z2
+ ˇ�Z ε̇p

Z (15)

where Cp is the specific heat, k is the conductivity,  ̌ is the Taylor-
Quinney coefficient and ε̇p

Z is the plastic strain rate along the axial
direction. The thermoelastic effects are neglected. Note that, for
the sake of simplicity, the spatial derivative which appears in
the conductivity term is taken as a Lagrangian derivative (small
strains in the conductivity term).

• Stress rate: the Green–Naghdi objective derivative, due to the
one-dimensional nature of the model, is computed as a simple
time derivative:

�∇
Z = �̇Z (16)

Considering the domain [0, L], Eqs. (13)-(16) are numerically
solved under the following initial and boundary conditions formu-
lated in Lagrangian coordinates:

UZ (Z, 0) = 0; �Z (Z, 0) = 0; T(Z, 0) = T0

UZ (0, t) = 0; VZ (L, t) = Vimp;
∂T (0, t)

∂Z
= ∂T (L, t)

∂Z
=  0

where T0 is the initial temperature taken as 300 K and Vimp is the
impact velocity.

4. Finite difference model

Following the works of Zhou et al. [6], Regazzoni et al. [15]
and Ravi-Chandar and Triantafyllidis [16], we  have developed a
1D finite difference model to describe the mechanical behaviour
of elastoplastic bars subjected to dynamic tension. This numerical
approach was  presented and validated with experiments and finite
element calculations in our previous work [17]. In the present paper
we only show the main features of the model for completeness.
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