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a  b  s  t  r  a  c  t

We  present  a new  control  strategy  for  the vertically  excited  parametric  pendulum,  with a view  on  energy
harvesting  from  rotating  motion.  Two  possible  energy  sources  are  considered:  a  vibrating  machine,  rep-
resented  by  a sinusoidal  excitation;  and  the  sea  waves,  simulated  by a stochastic  process.  In both  cases,
rotations  can  be  achieved  and  maintained  only  for some  forcing  conditions.  Thus,  as  stable  rotations  are
required,  the  pendulum  must  be controlled.  We  propose  to perform  this  control  by  means  of a  telescopic
adjustment  of the  pendulum  length  during  the  motion.  The  idea  is  to  give  the  pendulum  an  aid  to reach
and  maintain  rotations,  accelerating  the  motion  by  modifying  conveniently  the  position  of the  mass.  To a
better  understanding  of this  concept,  one  may  think  of  a child  on  a swing,  who  extends  or  retracts  his  legs
in  order  to  accelerate  the  motion.  Numerical  simulations  show  that, with  a control  action  of  this  kind,
stable  rotations  can  be reached  regardless  of  the  forcing  conditions  and  for  every  set of  initial  conditions.
These  are  very  promising  results  in terms  of energy  harvesting,  since  an optimized  application  of  this
control  technique  can  lead  to the  design  of autonomous  pendulum  harvester  devices.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The increasing global awareness about the environmental dam-
age has prompted in recent years the search for clean energy
sources. The vast energy availability in ambient vibrations allows
the development of many systems, aimed at the recovery of energy
from variety of sources. These sources include the motion of large
bodies of water [1,2], the biomechanics of a walking person [3]
and the vibrations in civil structures [4], industrial machines [5] or
flying planes [6], among others [7–9].

The vertical parametric pendulum was firstly proposed as an
energy harvester device by Prof. Marian Wiercigroch [2]. Since the
beginning of the century, he and his co-workers, and also other sci-
entists, explored the ability of such systems for energy extraction
from the ocean waves [10–16]. The idea consists of a pendulum
on a floating platform, which is in turn vertically excited by the
waves at a given (averaged) frequency. If stable rotational motion
is achieved, a generator attached to the pendulum axis may  pro-
duce electrical energy [12]. Although the idea is very simple and
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intuitive, its implementation is not trivial since stable rotations may
be difficult to obtain, even with a simple sinusoidal excitation [17].
This is due to a strong dependence on forcing parameters and initial
conditions of position and velocity. Thus, to reach stable rotations,
a control strategy is necessary [11].

One of the forcing conditions we consider in this work is a sinu-
soidal excitation, with constant forcing parameters of amplitude
and frequency. This situation can represent the motion imposed to
the pendulum by an industrial vibrating machine. In this case, sta-
ble pure rotations (i.e. no oscillating behavior of any kind, [18]) can
be reached only for some combinations of the forcing parameters
[17]. But even if these parameters can be conveniently chosen, rota-
tions coexist with other responses such as oscillations and chaotic
motion, depending on the initial conditions [19]. Moreover, it has
been demonstrated [12] that, in practical terms, stable pure rota-
tions are possible only in a subset of the theoretical region of the
parameter space. Being the forcing parameters constant, part of the
problem can be solved with an adequate design, by tuning the sys-
tem within the region of the parameter space in which rotations
are possible. With a good design, control of rotations is required
only to correct responses due to unsuitable initial conditions.

The other excitation considered is the motion of the sea waves,
which is simulated as a stochastic process [11]. In this situation,
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there are multiple forcing parameters of amplitude and frequency
(determined by a spectral density), and there is not a suitable design
for tuning the system. The response of the pendulum is also stochas-
tic, and active control is necessary not only to ensure rotational
response irrespective of initial conditions, but also to deal with a
continuously changing load.

We propose an active control by means of an actuator, which
adjusts the pendulum length during the motion. This idea has been
successfully applied for a simple damped pendulum [20]. The tele-
scopic adjustment gives the pendulum an aid to reach and maintain
rotations, accelerating the motion by modifying the position of
the mass according to a convenient strategy. The control function
proposed to govern the change of length uses as input the mea-
surement of the angle and velocity of the pendulum. Since rotations
produce arbitrary large angle values, a sine function is used in order
to keep the rotation control as dependent on the angular posi-
tion but not on the actual angle measurement. The dependence on
angular velocity is modeled with a logistic function, which value
depends on whether velocity adopts positive or negative values.
The application of the control is limited by a predefined threshold
velocity, and steepness factors are defined to get a realistic value
for the actuator velocity.

The article is organized as follows. After this introduction (Sec-
tion 1), the equation of motion of the vertical parametric pendulum
with variable length is derived, considering sinusoidal and stochas-
tic excitations (Section 2). Then, the control strategy employed to
adjust the pendulum length is presented and explained (Section
3). Finally, the results of numerical simulations comparing con-
trolled and uncontrolled pendulums are presented and discussed
(Section 4).

2. The vertical parametric pendulum with variable length

2.1. Equation of motion

Consider the pendulum system given in Fig. 1, which axis of rota-
tion is excited by an imposed motion Y = Y(t). The total length of the
pendulum, l, can be modified by adjusting the position of the tele-
scopic rod, of length l2. When this rod is retracted, the pendulum
recovers its natural length l1 (l = l1). The equation of motion of this
system can be set up by using Lagrange’s equation for single degree-
of-freedom non-conservative systems, which can be expressed as.
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Fig. 1. Scheme of the vertical parametric pendulum with variable length.

represent kinetic, potential and dissipative energy of the system,
respectively. These energy magnitudes are
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where m is the mass of the bob, c� is the viscous damping coefficient
and g the acceleration of gravity.

Introducing Eq. (2) into Eq. (1) and performing the correspond-
ing derivatives, the equation of motion of the system can be
obtained as

ml2�̈ + m(lŸ + lg + l̇Ẏ) sin � + (c�l
2 + 2mll̇)�̇ = 0 (3)

where
.

l̇ represents physically the linear velocity of the telescopic
actuator. Eq. (3) allows studying the dynamics of the pendulum for
an arbitrary time-dependant imposed motion Y.

2.2. Imposed motion as a sinusoidal wave

If the imposed motion is a wave of the form Y(t) = −A cos(˝t),
Eq. (3) takes the form (after dividing by ml2)
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For l constant, Eq. (4) recovers the classical equation of motion of
the vertical parametric pendulum [17,21].

2.3. Imposed motion as a simulated sea wave

A sea wave can be represented by a composition of sinusoidal
waves with frequencies determined by a spectral density. To sim-
ulate the time history of a wave, we use the approach presented
in reference [11], based on the Shinozuka–Jan method for random
processes [22] and the Pierson–Moskowitz spectral representation
of the sea waves [23]. This power spectral density is given by

S(˝) = 8.1g2
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˝4H2
s

)
(5)

where Hs is the significant wave height, corresponding to 1/3 of
the highest wave measured. With the statistical information of Eq.
(5), the stochastic time-dependant excitation of the sea wave is
expressed as

Y(t) =
√

2
N∑
i=1

√
(˝i − ˝i−1)S(˝i) cos(˝it + �i) (6)

where �i are random phase angles and N is the number of sam-
pled frequencies. The frequency range, [˝0, ˝N] must be set in
a way  that most of the spectrum S to be contained at that range.
The frequency intervals, ˝i − ˝i−1, are determined by solving the
following equation∫ i

i−1

S(˝)d  ̋ =
∫ i+1

i

S(˝)d  ̋ (7)

The fulfillment of Eq. (7) ensures that the area under the curve
of S(˝) is the same for all frequency intervals, with the consequent
good covering of the highest spectral density zone. The wave model
of Eq. (6) was  tested against real data, producing a good agreement
[11]. Considering Eq. (6) as the imposed motion required in Eq. (3),
we can study the behavior of the pendulum with adjustable length
under the excitation of the sea waves.
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