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a  b  s  t  r  a  c  t

In  this  study  a micromechanical  model  is  proposed  for ductile  porous  material  whose  matrix  is reinforced
by small  inclusions.  The  solid  phase  is  described  by  a  pressure  sensitive  plastic  model.  Based  on  works  of
Maghous  et  al. [6], a macroscopic  plastic  criterion  is firstly  obtained  by using  a two-step  homogenization
procedure.  The  effect  of  porosity  at the  mesoscale  and  the  influence  of  inclusions  at  the  microscale  are
taken  into  account  simultaneously  by  this  criterion.  With  a non-associated  plastic  flow  rule, the  micro-
macro  model  is applied  to  modeling  of mechanical  behavior  of  a cement  paste.  In  particular,  we  have
considered  at the microscopic  scale  the  formation  of calcite  grains  by  carbonation  process  in  the  solid
matrix.  The  studied  cement  paste  is  then  seen  as  a reinforced  matrix–pore  system.  Comparisons  between
numerical  results  and experimental  data  show  that the  proposed  model  is  able  to capture  the  main
features  of  the  mechanical  behavior  of  the  studied  material.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The microstructure of composites has a great effect on the
macroscopic mechanical behavior. For example, the pores or inclu-
sions significantly affect the mechanical strength and deformation
behavior of the heterogeneous material. Recently, in the con-
text of geological disposal of radioactive wastes, various clayey
rocks have been investigated as a possible geological barrier. It
was found that the macroscopic mechanical behaviors of these
rocks strongly depend on the mineralogical compositions and
microstructure evolutions. The mineralogical analysis has revealed
that at the mesoscopic scale, this class of clayey rocks is composed
of a porous clay matrix which is reinforced by mineral inclusions
essentially composed of quartz and calcite grains. The size of pores
is much smaller than the one of grains. Various micromechanical
models have been proposed to describe the elastoplastic behav-
iors of clayey rocks ([1,11,12], etc.). The studied rock has been
schematized as a porous matrix reinforced by inclusions at the
mesoscale. Recently, the strength properties of this class of com-
posite material (microporous matrix – inclusions) have also been
studied by He et al. [4] (see also [5]) with two  step homoge-
nization. The elliptic criterion of Maghous et al. [6] is adopted
to describe the mechanical behaviors of microporous medium at
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the microscale. In the second homogenization procedure, the limit
analysis theory is used to capture the influence of inclusions. But
for some others rocks, cement-based materials or polymers, the
pore size can be much bigger than that of inclusions. For exam-
ple, new small calcite grains will be generated in the cement paste
due to the carbonation process. The solid matrix will be rein-
forced by these small calcite (CaCO3) grains at the microscopic
scale. This type of material can be seen as a porous material with
a reinforced matrix whose solid phase is described by a pressure-
dependent plastic model (Fig. 1). The objective of this paper is to
extend the works of Maghous et al. [6] and establish a micro-macro
model for this class of composite materials by using a two-step
nonlinear homogenization technique. Based on the results of Mag-
hous et al. [6], the variational homogenization methods will be used
twice to obtain the macroscopic criterion for a porous medium with
a reinforced matrix by small rigid inclusions at the microscopic
scale.

The paper is organized as follows. In Section 2, a micromechan-
ical constitutive model will be firstly formulated for the studied
porous materials with a reinforced and compressible matrix. The
effect of porosity is taken into account at the mesoscale and the
influence of inclusions is considered at the microscale. Then the
model is completed by a macroscopic plastic potential and a plastic
hardening law. In Section 3, the proposed non-associated model is
implemented and applied to describe the macroscopic mechanical
behavior of a cement-based material considering the carbonation
effects.
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Fig. 1. Porous material with a reinforced matrix.

2. Macroscopic criterion of porous media with a reinforced
matrix

In this section, we aim at determining the macroscopic plastic
criterion of the porous medium with a reinforced matrix (Fig. 1). The
solid phase is compressible and obeys to a Drucker–Prager criterion.
Comparing with the solid phase, the inclusion are assumed rigid,
spherical and randomly distributed in the matrix. To consider the
effects of pores and inclusion simultaneously, a two-step homog-
enization procedure will be adopted to formulate the macroscopic
plastic criterion of the studied composite (microscale to mesoscale,
mesoscale to macroscale).

As illustrated in Fig. 1, the volume fraction � of inclusions at the
microscale and the porosity f of the porous medium are given by:

� = ˝i
˝i + ˝s

, f = ˝p
˝i + ˝s + ˝p

(1)

where ˝i, ˝s and ˝p are volumes of inclusions, solid phase in the
matrix and the pore of the composite, respectively.

2.1. Homogenization from micro to meso for the effect of
inclusions

In this transition from microscale to mesoscale, the solid phase
of the reinforced matrix is assumed to obey to a Drucker–Prager
criterion:

�s(�) = �d + T(�m − h) ≤ 0 (2)

where � denotes the local stress in the solid phase at the microscale,
�m = tr�/3 the mean stress, and �d = √

� ′ : � ′ the equivalent stress
(with � ′ = � − �m1). The parameter h represents the hydrostatic
tensile strength while T denotes the frictional coefficient.

For geomaterials, the plastic potential of the solid phase is given
by:

gs(�) = �d + t�m (3)

the parameter t defines the dilatancy coefficient which controls the
volumetric plastic strain.

For a solid phase reinforced by rigid inclusions, we  take advan-
tage of results obtained by Maghous et al. [6] who made use of a non
linear homogenization technique based on the so-called modified
secant method. Note that this method was originally proposed by
Ponte Castaneda [8,9] as a variational method and was  later inter-
preted as “a modified secant method” by [10,13,14]. These authors
obtained a criterion and a flow rule for a matrix (Drucker–Prager
type) reinforced by rigid inclusions.

Here we recall the main steps of the modified secant method
using in [6]. With (2) and (3), the support function �s can be cal-
culated with the help of a sequence of potentials  a using the
technique proposed in [2]. Then the stress state is defined by means
of a potential  a and an isotropic prestress �p0: � = ∂ a/∂d + �p01,
which can be rewritten with the secant bulk and shear moduli and
the isotropic prestress in the following form:

� = 2�sd′ + �sdv1 + �p1 (4)

where �s, �s and �p are functions of plastic deformation d(dv, dd)1

which is non-uniform in the solid phase. For the simplicity, an effec-
tive strain rate de (average of d over the matrix) is introduced.
Then these three non-uniform moduli can be expressed in term
of de (�s(d) = �seq, �s(d) = �seq and �p(d) = �peq). The homogenized
behavior takes the form:

�̃ = Chom : D + �̃p1;

Chom(dev, de
d
) = 3�hom(�seq, �seq)J + 2�hom(�seq, �seq)K

(5)

The symbol “∼” is used here in order to make difference between
the mesoscopic stress field �̃ and the microscopic one in the solid
phase �.  ̇ is used to denote the macroscopic stress of the compos-
ite.

Owing to the assumption of rigid inclusions, the macroscopic
prestress simply reads �̃p = �peq. The state equations are expressed
as:

�̃m = �homDv + �̃p; �̃d = 2�homDd (6)

Following [2], the relation between the effective strain rates in the
solid phase and the loading D is:

1
2

(1 − �)dev
2 = 1

2
∂�hom

∂�seq
D2

v + ∂�
hom

∂�seq
D2
d

(1 − �)de
d

2 = 1
2
∂�hom

∂�seq
D2

v + ∂�
hom

∂�seq
D2
d

(7)

The homogenized secant moduli �hom and �hom are evaluated with
the help of the Mori–Tanaka scheme which coincides here (case of
rigid inclusions) with the Hashin-Shtrikman lower bound:

�hom = 3�seq + 4��seq
3(1 − �)

, �hom = �seq
�seq(6 + 9�) + �seq(12 + 8�)

6(1 − �)(�seq + 2�seq)
(8)

The strength criterion and the plastic potential of the solid phase
reinforced by rigid inclusions (Fig. 1b) take the following form:

�m = �̃d + T̃(�̃m − h) ≤ 0; T̃ = T

√
1 + 3

2
�

√
1 − 2

3
�t2

1 − 2
3
�tT

gm = �̃d + t̃�̃m; t̃ = t

√√√√√ 1 + 3
2
�

1 − 2
3
�t2

(9)

2.2. Homogenization from meso to macro for the effect of pores

In the second homogenization, the effect of pores in the porous
medium will be considered (Fig. 1a). The reinforced matrix is
described by (9). Comparing the equations (9) with (2) and (3), the
same forms are found for the criterion and the plastic potential. The
non-linear homogenization technique proposed by Maghous et al.
[6] for the porous medium will be adopted here.

Different with the case of solid phase reinforced by rigid inclu-
sion, the macroscopic prestress changes to 	p = �hom

�emeq
�̃peq, the state

equation (6) becomes:

	m = �hom
(
Dv + �̃peq

�emeq

)
; 	d = 2�homDd (10)

1 Where dv = trd, dd =
√

d′ : d′ with d′ = d − dv
3 1.
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