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a  b  s  t  r  a  c  t

This paper  applies  affine  arithmetic  to transient  statistical  energy  analysis  (SEA)  of a  two-oscillator  sys-
tem,  and  the  influence  of  the  measurement  errors  of parameters  on  predicted  transient  energy  is revealed.
By considering  the damping  loss  factors  and  coupling  loss  factors  with  measurement  errors  as  inter-
val  variables,  the  mathematical  expressions  of the  total  energy  interval  and  the  peak  energy  interval
can  finally  be derived.  Then  two  flat  plates  which  are  perpendicular  to  each  other  and  joined  together
through  bolts  are  exploited  as numerical  example  to demonstrate  the  feasibility  and  effectiveness  of the
presented  approach.  Meanwhile,  the  structural  transient  energy  calculated  from  the  presented  approach
is compared  with  that  obtained  from  the  traditional  method  which  did  not  consider  the measurement
errors  of  damping  loss  factors  and  coupling  loss  factors.
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1. Introduction

Using the steady-state SEA, the coupling dynamics problems in
high frequency can be addressed well. However, the steady-state
SEA formalism is not directly applicable to the analysis of tran-
sient vibrations because the total energy of each subsystem changes
over time in the transient SEA. The input power is the sum of the
output power and the derivative of energy with respect to time. Fur-
thermore, the time-varying total energy of each subsystem can be
obtained by solving a set of simultaneous energy balance equations.

Over the past several decades, a great many theoretical inno-
vations in transient SEA have been proposed and some successful
applications have been reported, which greatly enriched and
extended the contents of transient SEA. Yamazaki et al. [1] dis-
cussed the characteristics of prediction by transient SEA for a
two-subsystem system, focusing on the relationship between the
predictions and SEA loss factors. Robinson and Hopkins [2] used
experimental statistical energy analysis to determine the steady-
state coupling loss factors, and the measured coupling loss factors
were then incorporated in a two-subsystem transient SEA model
for comparison with measured maximum sound pressure levels
and the maximum vibration levels. Good agreement was achieved
between measurements and predictions. Mao  et al. [3,4] introduced
the transient SEA method into the identification of impact load.
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According to the transient SEA, Pinnington and Lednik [5] pro-
vided the exact transient energy response of a two-oscillator
system subject to an impulse excitation. Meanwhile, the peak
energy was also investigated. The exact transient energy response
calculated by Pinnington and Lednik is feasible and effective, but
the measurement errors of damping loss factor and coupling loss
factor of each subsystem were not considered in their research. In
the real situation, the damping loss factors and the coupling loss
factors are usually very small parameters in SEA, so it is difficult
to accurately measure these parameters. Sometimes the measure-
ment errors of damping loss factors and coupling loss factors are
big and non-ignorable. Therefore, it is worth exploring the effect of
the measurement errors of parameters on the predicted structural
energy.

At present, interval analysis methods are well recognized as
a powerful tool for dealing with the problem of measurement
errors because interval analysis methods require a small amount
of information and can effectively reduce the influence of human
factor. Under the assumption of small variations about the nominal
parameter value, Qiu et al. [6,7] made use of a first-order inter-
val perturbation approach to determine the influence of interval
parameters on static displacement of structures. Yang et al. [8] pro-
posed an interval finite element method for the frequency response
function of structures with uncertain parameters. Affine arithmetic
was developed as an enhancement of the basic interval arithmetic.
Manson [9] applied affine arithmetic to uncertainty modeling in
structural analysis. Miyajima and Kashiwagi [10] conducted a the-
oretical study on the existence of solution in nonlinear systems by
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using affine arithmetic. The dynamic eigenvalue analysis of struc-
tures with interval parameters based on affine arithmetic has been
reported by Zhu and Chen [11]. Degrauwe et al. [12] suggested a
novel method to solve affine systems with linear equations, which
allowed for the application of affine arithmetic in finite element
analysis. Staudt et al. [13] developed an interval Newton method
based on the modified affine arithmetic to find all possible station-
ary points of the tangent plane distance function.

This paper applies affine arithmetic to transient SEA of a two-
oscillator system, and the influence of the measurement errors of
parameters on predicted transient energy is revealed. By consid-
ering the damping loss factors and coupling loss factors with
measurement errors as interval variables, the total energy interval
and the peak energy interval can be provided. The whole content is
organized as follows. In Section 2, the basic SEA and interval theory
are described in detail. In Section 3, mathematical expressions of
the total energy interval and the peak energy interval are derived.
In Section 4, a two-plate system is used as numerical example
to demonstrate the feasibility and effectiveness of the presented
approach, where the presented approach is compared with the
method proposed by Pinnington and Lednik [5]. In Section 5, some
useful conclusions are given.

2. Basic SEA and interval theory

2.1. SEA theory

The dissipated power of subsystem i in SEA is evaluated by

pid = ω�iEi (1)

where ω is the center frequency in the band �ω, �i is the damping
loss factor which represents the rate of energy transfer out of the
subsystem i into an unrecoverable energy form (such as heat), and
Ei is the total energy of subsystem modes at frequency ω.

The absolute power flow from subsystem i to subsystem j is

pij = ω�ijEi − ω�jiEj (2)

where �ij is the coupling loss factor which represents the rate of
energy transfer out of subsystem i into subsystem j. Assuming the
number of the subsystems is k, the power balance equation of sub-
system i can be written as [14]:

pi,in = Ėi + ω�iEi +
k∑

j=1,j /=  i

(ω�ijEi − ω�jiEj) (3)

where pi,in is the input power from the external source of excitation.

2.2. Interval theory

In interval analysis, an uncertain variable is represented by a
closed and finite interval. An interval variable xI is fully character-
ized by its lower bound xl and its upper bound xu

xI = {x|xl ≤ x ≤ xu} = [xl, xu] (4)

The interval median is xc = (xl + xu)/2, while the interval disper-
sion is xr = (xu − xl)/2. The basic operators addition (+), subtraction
(−), multiplication (×) and division (/) are generalized for the case
of interval variables as: [15]

xI + yI = [xl + yl, xu + yu]

xI − yI = [xl − yu, xu − yl]

xI × yI = [min{xlyl, xlyu, xuyl, xuyu}, max{xlyl, xlyu, xuyl, xuyu}]
xI/yI = xI × [1/yu, 1/yl]

(5)

It should be pointed out that Eq. (5) has usually the problem
of interval extension. Take a function f(x) = (1 + x)/x and an inter-
val variable xI = [1, 2] as an example, the evaluation of f(xI) can be
obtained by Eq. (5)

yI1 = f (xI) = (1 + [1,  2])/[1,  2] = [1,  3] (6)

When the function f(x) is simplified to 1 + (1/x) prior to the eval-
uation of f(xI), however, the exact result is found:

yI2 = f (xI) = 1 + 1/[1, 2] = [3/2, 2] (7)

The main reason of interval extension is that xI is used more
than one time. Manson [9] provided the affine arithmetic which
can improve the problem of interval extension to some extent. In
affine arithmetic, xI = [xl, xu] and yI = [yl, yu] are expressed as:

xI = x0 + x1[ε1] + · · · + xn[εn] + xe[εe] (8)

yI = y0 + y1[ε1] + · · · + yn[εn] + ye[εe] (9)

where [εi] = [−1, 1] (i = 1, . . .,  n) and [εe] = [−1, 1]. The basic opera-
tions are

xI + yI = (x0 + y0) +
n∑
i=1

(xi + yi)[εi] + (xe + ye)[εe] (10)

xI − yI = (x0 − y0) +
n∑
i=1

(xi − yi)[εi] + (xe + ye)[εe] (11)

xI × yI = x0y0 + 1
2

n∑
i=1

xiyi +
n∑
i=1

(x0yi + xiy0)[εi]

+

⎛
⎝ n∑

i=1

(|xi|ye + xe|yi|) + |x0|ye + xe|y0| + xeye

+ 1
2

n∑
i=1

|xiyi| +
n∑
i=1

n∑
j=i+1

|xiyj + xjyi|

⎞
⎠ [εe] (12)

1/xI = − x0

[x]−[x]+
+ 1

2[x]−
+ 1

2[x]+

+ 1√
[x]−[x]+

+
n∑
i=1

− xi
[x]−[x]+

[εi]

+
(

− xe

[x]−[x]+
+
∣∣∣∣∣ 1

2[x]−
+ 1

2[x]+
− 1√

[x]−[x]+

∣∣∣∣∣
)

[εe]

(13)

in which [x]− = x0 −
∑

|xi| − xe and [x]+ = x0 +
∑

|xi| + xe

Consider the function f(x) = (1 + x)/x and the interval variable
xI = [1, 2] again. Setting xI = 3/2 + [ε1]/2 and using Eqs. (12) and (13),
we have

f (xI) = 1.705 − 0.271[ε1] + 0.191[εe] = [1.243,  2.168] (14)

It can be found that f(xI) calculated by affine arithmetic is closer
to the exact result.

3. Affine arithmetic for transient SEA

The subsystems in SEA are groups of similar modes within the
physical components of a system. The physical components of a sys-
tem are often easily identified as the relatively uniform sections of
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