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a  b  s  t  r  a  c  t

Coiling  problems  of  elastic  rope  and viscous  jet have  been  fully  studied  both  experimentally  and  theo-
retically,  but  very  few  studies  exist  for viscoelastic  material.  In  this  paper,  a system  of  one-dimensional
two-point  boundary  nonlinear  equations  for Kelvin  material  coiling  is  presented.  The equations  are  solved
numerically  by continuation  method.  It  is found  that  the  coiling  frequency  depends  on the dimensionless
retardation  time  and  other  continuation  parameters  involving  inertia  and  gravity.  The  multivaluedness
of  the  solution  is  observed  in the  numerical  study.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The phenomenon of thin filament falling on the surface forming
serious coiling circles aroused great interesting in recent decades.
Coiling problems of purely elastic rope and viscous Newtonian jet
have been studied in great detail. For purely elastic rope, Mahade-
van and Keller [1] firstly proposed a numerical model based on
Krichhoff type equations including the action of gravity and elastic
force but with some sign problems of inertial term [2]. Recently,
Habibi et al. [2] restudied this issue by laboratory experiments and
gave out a correct version of Mahadevan’s model, the numerical
results of which are in excellent agreement with the experiment.
Their researches show three basic modes appear for the elastic rope
coiling: elastic, gravitational and inertial mode which involving
different force balances of elastic force, gravity and inertia force.
For viscous Newtonian jet, experimental and theoretical studies
revealed three different modes including viscous, gravitational and
inertial modes depending on the relative importance of viscous
force, gravity and inertia force [3]. Also the instability and mul-
tistable behavior are observed both in the numerical study and
experiments [4,5]. Ribe et al. [6] analyzed the stability of coil-
ing problem through applying perturbations on time-dependent
equations of thin viscous rope’s motion. A recent review article
[7] summarized the pioneer work in the field of viscous jet coil-
ing and figured out that the exploration of ropes coiling problem
for non-Newtonian rheology had only begun. Actually, there are
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some exploratory experimental researches of viscoelastic filament
which have been carried out. Majmudar et al. [8] presented a sys-
tematic experimental study of the effects of viscoelasticity on the
dynamics of liquid jet of surfactant solution, where the rheology
of jet is fitted by Maxwell model. Rahmani et al. [9] presented an
experimental investigation of coiling of two kinds of yield stress
filaments, which were shaving foam behaving like solid and hair
gel like liquid. Both working materials were measured by rheome-
ter, with elastic and viscous modulus. These experiments illustrate
the viscoelastic material coiling is different with elastic or viscous
coiling. However, few theoretical and numerical studies exist for
modeling the viscoelastic filament and analyzing its dynamics.

In this paper, we focus on the methodology of modeling and
numerical studying of thin Kelvin-type viscoelastic filament coiling
problem. Our goal is firstly to establish a system of one-dimensional
governing equations for the steady state of viscoelastic filament
coiling within the corotating reference frame that the filament is
laid out in a circular coil with uniform radius. And the second goal
is through numerical techniques such as continuation method and
spectral method to find out the solutions of the problem in vari-
ous parameter values, especially to check how the retardation time
influences the behavior of coiling.

2. Governing equations for steady coiling of viscoelastic
filament

2.1. Assumptions and conventions

Our analysis is based on several assumptions: (1) The filament
is a naturally straight thin thread with circular cross-section. After
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deformation, the central line becomes curve and is parameter-
ized by the arc length s. The slenderness of filament is identify
by the parameter ε = d0� � 1, where d0 and � are the diameter
of the nozzle and the characteristic axial curvature respectively.
(2) The diameter of the filament remains constant as a function
of the arc length, which is equal to the diameter at the nozzle.
The stretching of the filament due to gravity is neglected. This
assumption corresponds to the observation of coiling of shave
foam [9] and explained in the Section 5. (3) For thin filament, the
shear deformation between cross sections is small compared to
the bending and twisting deformation and neglected. Also shear
deformation will not occur in the plane of cross section. (4) The
material is nearly incompressible. Then the magnitude of veloc-
ity along the axis remains constant due to the conservation of
mass.

There are two kinds of three-dimensional coordinate systems
employed. One is local system defining the orientation of the
cross section and the other is global frame to describe the gravity
and central line position. For convenience, we use the gener-
alized Einstein summation convention: Latin and Greek indices
range over the values 1, 2, 3 and 1, 2 respectively. (d1,d2,d3)
describes a local coordinate system, where d1 and d2 lie along the
principal axes of the cross-section and d3 = d1 × d2 which points
along the axis of the rod. The local coordinate system is rela-
tive to global frame (e1,e2,e3) through a matrix [L] = [lij], which
satisfies, di = lijej. [L] is defined by a singularity-free parameter-
ization in terms of the Euler parameters q1, q2, q3 and q0 as
[1],

[L] =

⎡
⎣ q2

1 − q2
2 − q2

3 + q2
0 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) −q2
1 + q2

2 − q2
3 + q2

0 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) −q2
1 − q2

2 + q2
3 + q2

0

⎤
⎦ (1)

By default, all the components of vectors and tensors are
expressed in the local coordinates below.

2.2. Constitutive relation and deformation analysis

2.2.1. Kelvin model
A Kelvin model is given by [10] T = −pI + � + 2�Ė + 2GE, where

T is the stress tensor of the filament. −pI exists due to the incom-
pressible material condition and � due to the neglect of shear and
stretch between cross sections as a series of planes, the compo-
nents �11, �12 and �22 of which are zeros. Ė and E are the strain
rate tensor and the strain tensor (both are equal to their deviators
due to incompressible material), respectively, multiplied by viscos-
ity � and shear modulus G. Then the retardation time measuring
viscoelasticity is defined by � = �/G. A Kelvin model represents
viscoelastic solid material. Below the strain rate tensor and the
strain tensor will be determined by deformation analysis.

2.2.2. Strain rate tensor
The general idea we follow is that of Love [11]. As shown in

Fig. 1(a), an arbitrary point Q within the filament is given by a
position vector as, rQ(s, x1, x2) = �Q + �, where �Q(s) presents the
position vector of the central line and �(s, x1, x2) = x˛d˛(s) is a
vector in plane from central line to Q. Another point Q′ near Q
is given by rQ ′ = �Q (s + ıl3) + (x˛ + ıl˛)d˛(s + ıl3). Then a linear
element can be expressed as ıS = rQ’ − rQ = ıl3(d3 + � × �) + ıl˛d˛,

Fig. 1. The sketch of deformation analysis: (a) for the strain rate tensor, (b) for the
strain tensor.

where �(s) = �idi is the curvature of the filament. We  expand the
element in the local coordinate as ıS = ıl̃idi, and finally obtain the
relation,⎧⎪⎨
⎪⎩

ıl3 = (1 − �1x2 + �2x1)ıl̃3

ıl2 = ıl̃2 − �3x1ıl̃3

ıl1 = ıl̃1 + �3x2ıl̃3

(2)

After a short time �t,  ıS transformed into a new linear element
ıs. A relation between two  elements exists as ıs = ıS + �v�t, where
�v = vQ ′ − vQ are the velocity difference between Q and Q′. The
velocity of a material point is expressed by v = vd3 + ω × 
 + u.
Here v presents the magnitude of axis velocity, � = ωidi is one half
the vorticity at the jet axis for steady coiling and u = uidi is the lateral
velocity in the cross section induced by incompressible condition.
By the kinematic analysis of Ribe et al. [3,6], there are the relations
�1 = v�1, ω2 = v�2 and ω3 = v�3 +  ̋ holding. The definition of the
rate of element length square requires,

dt(|ıs|2) = lim
�t→0

[(|ıs|2 − |ıS|2)/�t] = 2�viıl̃i (3)

Here �v can be calculated as,

�v  = v� × d3ıl3 + (ω + ıl3ω′
i
di + ıl3� × ω)  × (
 + ıl˛d˛ + ıl3� × 
) − ω × 
 + ıl3� × (u˛d˛) + ılˇ∂ˇu˛d˛

= [v� × d3 + ω′
i
di × 
 + � × (ω × 
) + � × (u˛d˛)]ıl3 + ω × (ıl˛d˛) + ılˇ∂ˇu˛d˛

(4)

Unless otherwise noted, the primes appearing in (4) and other
following expressions denote the differentiation with respect to
s. By substituting (2) into (4) and omitting the higher order small
terms, we can obtain the components of �v  as,⎧⎪⎨
⎪⎩

�v1 = ∂1u1ıl̃1 + (∂2u1 − ω3)ıl̃2 + (v�2 − ω′
3x2)ıl̃3

�v2 = (∂1u2 + ω3)ıl̃1 + ∂2u2ıl̃2 − (v�1 − ω′
3x1)ıl̃3

�v3 = −ω2ıl̃1 + ω1ıl̃2 + (−B2x1 + B1x2)ıl̃3

(5)

where B1 = ω′
1 − ω2�3 + ω3�2 and B2 = ω′

2 + ω1�3 − ω3�1. Accord-
ing to the theory of deformation analysis, the relation between the
rate of square of line element length and the strain rate tensor is
expressed by,

dt(|�s|2) = ıS · 2Ė · ıS

= 2(Ė11ıl̃21 + Ė22ıl̃22 + Ė33ıl̃23 + �̇12ıl̃1ıl̃2 + �̇13ıl̃1ıl̃3 + �̇23ıl̃2ıl̃3)
(6)

Comparing (6) and (3), we obtain the normal strain rate compo-
nents as Ė11 = ∂1u1, Ė22 = ∂2u2 and Ė33 = −B2x1 + B1x2. The shear
strain rate components are �̇12 = 2Ė12 = ∂2u1 + ∂1u2, �̇13 = 2Ė13 =
−ω′

3x2 and �̇23 = 2Ė23 = ω′
3x1. In order to solve out u1 and u2, two

equations are needed, one of which is from that the first invariant
of strain rate must be zero for the incompressible material and the
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