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a  b  s  t  r  a  c  t

This  paper  presents  wave  analysis  and  control  for  double  cascade-connected  damped  mass-spring  sys-
tems, whose  mass  is connected  beyond  the adjacent  masses.  The  system  is  motivated  by a cantilevered
tensegrity  beam  supporting  tensile  and  compressive  forces.  The  wave  solution  is derived  from  a  recur-
rent formula,  and  the  properties  of the  propagation  constants  are  precisely  investigated.  Elimination  of
reflected  waves  provides  the impedance  matching  controller.  We  show  that  the  impedance  matching
controller  can be constructed  from  a similarity  transformation  of the  characteristic  impedance  matrix  by
a matrix  composed  of  the  propagation  constants.  A  numerical  example  of  vibration  control  of  a tensegrity
beam  is  shown.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Demands for mechanical structures to be lighter, faster, and
energy efficient have meant active vibration control of flexible
structures has been attracting increasing attention in recent years.
Most active vibration control designs are based on modal analy-
sis (modal control) (see, for example, [4,25,31]), a well-established
technique. However, modal control encounters difficulties in con-
trolling modally dense structures (i.e., very flexible structures
or large scale structures), because modal frequencies and modal
shapes are extremely sensitive to modeling errors [27,19].

For certain types of flexible structures composed of simple
members, such as vibrating strings, beams, flexural waveguides,
etc., dynamical response can be described by wave motion. In
wave analysis, system dynamics are described by transfer functions
called secondary constants (propagation constants and character-
istic impedances). Secondary constants are independent of the size
or length of the structure, and are less sensitive to modelling errors
[27,19,36]. Therefore, control design based on wave analysis (wave
control) is expected to be efficient for modally dense structures.

Wave control of flexible structures was originally developed for
lateral beam vibration by [46], and extended to junction control
of structural networks [9,8,27,28]. As a fundamental element in
structures, wave properties of slender beams have been the topic
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of much research [18,10,7,23,45]). Wave control of a rectangu-
lar panel was  investigated in [15,16], and of cascade connected
mass-spring systems in [48,36]. Hybrid wave/mode control was
proposed in [24,22], and wave propagation under periodic disconti-
nuities on a uniform base was investigated in [6,26,40]. In contrast
to these model based approaches, some researches have utilized
the input/output response of the real structures to estimate their
secondary constants [19,21,32].

In this paper, we develop wave analysis and wave control for
double cascade-connected damped mass-spring systems, as an
extension of single cascade-connected damped mass-spring sys-
tems [48,36]. Each mass has connections to the masses next to the
adjacent masses, in addition to the usual cascade connection to the
adjacent ones. The system can be considered as a linear approxi-
mation of a tensegrity beam subjected to tensile and compressive
forces. Tensegrities have received significant interest among scien-
tists and engineers in many fields, such as, architecture, aerospace,
and robotics [30,43], because of their light weight, deployable,
shape control, and tunable stiffness properties. The tensegrity beam
corresponds to a continuum beam in continuum mechanics, and is
considered a fundamental element (or unit) in tensegrity design.

We introduce the double cascade-connected damped mass-
spring systems in Section 2, and provide the main outcomes in
Section 3. In Section 3.1, we derive the recurrent formula of the
system dynamics in the Laplace transform domain, and introduce
a similarity transformation to represent the system by the sum of
wave motions in Section 3.2, where the properties of the prop-
agation constants are also investigated in detail. The impedance
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matching controller is derived from the condition to eliminate
reflected waves in Section 3.3. The controller can be constructed
from a similarity transformation of the characteristic impedance
matrix by a matrix composed of the propagation constants. In Sec-
tion 4, we discuss the relationship between the system and the
tensegrity beam, and a numerical example of vibration control of
a tensegrity beam is given in Section 5. Section 6 summarizes and
concludes the paper.

In the following, s represents the Laplace operator, and C+ is the
set of complex numbers with positive real part. For notational sim-
plicity, we use the same symbol for a time variable and its Laplace
transform (x(t) ↔ x(s)).

2. System configuration

We  focus on the wave analysis and control of cascade-connected
damped mass-spring systems. Fig. 1 shows a conventional (or sin-
gle) cascade-connected damped mass-spring system, considered in
[48,36]. � represents the number of stages A; and m [Kg], d [Ns/m],
and k [N/m] are the mass, damping coefficient, and spring con-
stant, respectively. Each mass (Y) is only connected to the adjacent
masses with the damper and the spring (Z). v�(t) [m/s] represents
the velocity of the �th mass, and x� [m]  represents the displace-
ment (v�(t) = ẋ�(t)). f�(t) [N] is the reaction force from the right
side elements. The reaction force from the left is −f�−1(t) in this
case.

If we add additional dampers and springs to connect beyond the
adjacent masses, the system of Fig. 1 becomes Fig. 2. In this case,
beyond the connection with (� −1)th and (� +1)th masses, the �th
mass is connected to the (� −2)th and (� +2)th masses through the
dampers and springs, Z′. The reaction force from the left is f ′

�
(t) [N].

We assume that the system is uniform, i.e., all the masses, damp-
ing coefficients, and spring constants are the same, respectively.
The system is a natural extension of the single cascade-connected
system to multiple connections. We  call this system the dou-
ble cascade-connected damped mass-spring system, and it can be
regarded as a linear approximation of the longitudinal vibration of a
cantilevered tensegrity beam. The relationship between the system
and the tensegrity beam is given in Section 4.

We investigate the wave analysis and wave control of the double
cascade-connected damped mass-spring system shown in Fig. 2.

3. Main results

3.1. Recurrent formula

For lumped parameter systems, the recurrent formula of the
dynamics represented in the Laplace transform domain plays a
central role in the wave analysis [48,36]. Thus, we  first derive a
recurrent formula in the Laplace transform domain for the double
cascade-connected damped mass-spring system shown in Fig. 2.

To describe the forces acting on the �th mass, let the transfer
functions Y(s) and Z(s) be

Y(s) = ms, Z(s) = s

ds + k
. (1)

Using Y(s), the inertia force of the �th mass is

m v̇�(s) = Y(s)v�(s), (2)

and using Z(s), the reaction force f�(s) of the mass from the right is

f�(s) =
(

k/s + d
)

(v�(s) − v�+1(s)) +
(

k/s + d
)

(v�(s) − v�+2(s))

= 1
Z(s)

(v�(s) − v�+1(s)) + 1
Z(s)

(v�(s) − v�+2(s)). (3)

Similarly, the reaction force f ′
�
(s) from the left is

f ′
�(s) = 1

Z(s)
(v�(s) − v�−1(s)) + 1

Z(s)
(v�(s) − v�−2(s)) . (4)

In the following, we  omit the argument s, unless it is explicitly
required.

The equation of motion of the �th mass is

Yv� = −f� − f ′
�. (5)

Setting � → � −2 in (3), we have the velocity,

v� = −Zf �−2 − v�−1 + 2v�−2. (6)

Substituting (4) into (5), and eliminating v� by (6), we  have the
reaction force,

f� = (−2Y − 3/Z)v�−2 + (Y + 3/Z)v�−1 + (2 + ZY)f�−2. (7)

Fig. 1. Single cascade-connected damped mass-spring system.

Fig. 2. Double cascade-connected damped mass-spring system.
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