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a  b  s  t  r  a  c  t

Red  blood  cells  present  a biconcave  shape  and bear  an  inner  pressure  (osmotic  pressure)  when  they
are  in  the static  state.  In this  paper,  a model  of  “three-center-combined  shells”,  which  consists  of  two
spherical  shells  and  a toroidal  shell,  is  employed  to  describe  the geometric  shape  of red  blood  cells.  Surface
area and volume  of the  combined  shells  model  are  very  close  to those  measured  from  experiment.  The
stress  distribution  in the  cell  membrane  is  formulized  as a closed  form  according  to  the  Novozhilov’s
theory  of the  three-center-combined  shells.  Calculating  results  in  terms  of  Novozhilov’s  formula  give a
good  agreement  with  the  numerical  results  given  by  ABAQUS  when  using  actual  measurements.  It is
concluded  that the combined  shells  model  can  well  approximate  to the  biconcave  structure  of  red  blood
cells.  In  addition,  stress  calculation  shows  that  the  membrane  of  biconcave  red  blood  cells  can  carry
bending  moments,  and  the  moments  reach  a maximum  value  in  the  vicinity  of  joint  line  of  the  spherical
shell  and  the  toroidal  shell  in  the  combined  shells  model.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Red blood cells tend to deform easily. They present biconcave
shape when at rest and display various different shapes when flow.
For example, they become extremely elongated and freely bent
when flow into the micro vascular. The average life span of a red
blood cell is 120 days. After expansion to sphere, it is ultimately
devoid in the spleen [1].

Red blood cells usually bear an inner pressure. The amplitude of
the inner pressure can be adjusted by the bidirectional permeability
mechanism, and the inner pressure is also referred to as osmotic
pressure. During osmosis experiments, when the red blood cells
present a biconcave shape, the osmotic pressure is lower and there
is less fluid in the cell. When the curvature of red blood cells is
positive everywhere (gibbous), the osmotic pressure is higher and
there is more fluid in the cell correspondingly.

When the shape of red blood cells is biconcave, there are two
areas on the cell surface, which have positive and negative Gaus-
sian curvatures, respectively. The joint of the two areas is called
turning line or transition line. Thin shell theory indicates that
there exist bending moments in the vicinity of the transition line.
Therefore the cell membrane can sustain moments and behaves as

∗ Corresponding author. Tel.: +86 21 65983267; fax: +86 21 65983267.
E-mail address: zhangrj@tongji.edu.cn (R.J. Zhang).

a “real membrane” when the shape of red blood cells is biconcave.
However, when the cell is spherical, its membrane is incapable of
carrying any bending moment, and only provides surface tensions.
In this situation it behaves as an “ideal membrane”. As an ideal
membrane the red blood cells can change their shapes arbitrarily
when moving in a blood vessel. The concepts of “real” and “ideal”
membrane described above are given by Libai [2].

Thus, it can be inferred that the cell membrane of living body
can actively adjust the tensions of its different areas or the stress
distribution in it to change itself into or “real” or “ideal” membrane
and finally change its shape.

The transformation of the shape of red blood cells has been
discussed earlier, for example, in the paper by Beck [3].

A few models have been developed to analyze the mechani-
cal performance of cell membranes. Fung [4] established a variable
thickness shell model for red blood cells. Evans [5] proposed a sin-
gle strain energy function consisting of two terms to simulate the
constitutive relation of the membranes of red blood cells. Helfrich
[6] proposed a theory of the elasticity of lipid bilayers and explained
the biconcave-discoid shape under normal physiological condition.
Zarda [7] computed a large elastic deformation of red blood cells on
the basis of an assumed model includes the elasticity of the mem-
brane under tensions in its own plane and the bending elasticity.
Zhan et al. [8] simulated numerically the instantaneous deforma-
tion of red blood cells from biconcave into spherical shape and
found a critical osmotic pressure.
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Fig. 1. Schematic diagram of three-center-combined shells.

Therefore, it is important to determine the stress distribution
in the membrane of red blood cells when the cells have bicon-
cave shape. However, it is not understood yet how the membrane
adjusts its microstructure to form a desired stress distribution. It
can be imagined that the adjustment mechanism is very flexible,
and allows an arbitrary transformation between the real and the
ideal membrane.

It is found in this paper that the biconcave geometry of red
blood cells can be approximated in terms of a model of three-
center-combined shells. As for the three-center-combined shells,
the analytical expressions of stresses and straines have been given
by Novozhilov [9] in his monograph. Those expressions are directly
employed in this paper to calculate the stress distribution in the
membrane of biconcave red blood cells. For better reading, the
derivation of those expressions are listed in Appendix A. Some
errors in the monograph are modificated. In order to verify those
expressions, the ABAQUS software is employed to make a parallel
calculation. Measured data and experimental data are used in all
the culculations. Within limits of the authors’ knowledge, it is not
found yet in any literature that the three-center-combined shells
are used to model red blood cells.

2. Three-center-combined shells

Three-center-combined shells are an assembly of two spherical
shells and a toroidal shell. The shells are symmetrical about their
horizontal middle plane. The upper half of the shells is shown in
Fig. 1, in which the dotted line represents a spherical shell with
radius of R; the solid line represents a toroidal shell, whose radius
is r0 and the rotational radius of its centerline is R0; the angle at the
joint of two kinds of shells is �0; the thickness of the shells is h. As
can be seen that there are three centers for the half of the combined
shells, Novozhilov [9] referred them to as “three-center-combined
shells”.

3. Red blood cells with biconcave shape

Evans and Fung [10] gave a formula to fit an average cross-
sectional shape of red blood cells as follows:

� = 0.5[1 − �2]
1/2

(C0 + C1�2 + C2�4)

X = 3.91�(�m), Y = �(�m)
(1)

Fig. 2. Red blood cell fitting figure of measured data.

where � is in the range of −1 ≤ � ≤ 1, and X and Y are two
coordinates; constants C0 = 0.207161, C1 = 2.002558 and C2 =
−1.122762, respectively. Above formula is graphed in Fig. 2.

4. Model of three-center-combined shells

By reason of symmetry, a quarter of the cell model is taken to
be analyzed and shown in Fig. 3.

The center of spherical shells is located at (0, Y0) and the cen-
ter of toroidal shells is at (X0, 0). According to the formula (1), it is
easily determined that r = 3.91 �m and Y0 = 0.405 + R. By adjus-
ting the coordinates of the two  centers and the radii of the two
shells, it is finally determined that the radius of the spherical shells
r0 = 1.2920 �m and the associate abscissa is X0 = 2.6180 �m; the
radius of the toroidal shells is R = 3.0150 �m and the associate
ordinate is Y0 = 3.4200 �m; the angle at the joint of the spherical
and toroidal shells is �0 = 0.6533.

Two graphs depicted by using both Eq. (1) and the combined
shells model respectively are illustrated in Fig. 4. In the figure, the
red dashed line represents the graphical result of Eq. (1) for mea-
sured data, and the blue solid line is the graphical result of the
combined shells model. It can be clearly seen from Fig. 4 that the

Fig. 3. Calculation model (units of �m).
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