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a  b  s  t  r  a  c  t

This  work  is  a contribution  to the  study  of  deformation  of  a non-wetting  drop  transported  under  the  com-
bined  effect  of gravity  and  permanent  fluid  motion  in  a vertical  channel.  The  deformation  being  caused
during  passage  of the drop  through  a  constriction  formed  by  two  spherical  obstacles  placed  opposite  in
a  vertical  channel.  For  this  purpose  a three-dimensional  computation  is  conducted  in  order  to  illustrate
the  behavior  of  the  drop  in the  condition  of non-wettability.  The  flow  based  on Navier–Stokes  equation
is  solved  numerically  with  volume  of fluid  (VOF)  method.  The  corresponding  simulations  are carried  out
in view  to analyse  the behavior  of the  drop  when  it is forced  to  move  between  the  obstacles  for  different
values gap  size  until  the breakup  is  obtained.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Scientific problems concerning the interaction between
immiscible fluids and fixed solid particles continue to receive
much attention in mechanical engineering, chemical and bio-
chemical processing, environmental engineering or biomechanics.
Literature concerning this interaction has primarily considered the
motion of a single drop through a constricted tube, including cases
where drop breakup occurs [9,13,15,21]. More recently, Davis and
Zinchenko [6], Zinchenko and Davis [23,24] presented simulations
of a drop through a constriction between solid particles rigidly held
in space, including both spheres and disks, and extended to the
case of multiphase flow through a granular medium composed by
solids spheres. They indicated that the drop becomes trapped in a
smaller pore neck when the capillary number is less than a critical
value so that the drop is unable to deform enough to squeeze
through the constriction. Nguyen [14] and Hellou et al. [8] also
carried out a two-dimensional study of the influence of the shape
of the pores on the infiltration of a drop of Dense Nonaqueous
Phase Liquid (DNAPL) in a porous medium. Their analysis was
realised when the solid obstacles bounding the pores have circular
shape, square shape or intermediate ones and showed that the
retention of the liquid drop decreases as the shape of the solids
evolves from the square to the circle. In the present paper, we
consider the situation where the retention is week. Thus, we
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investigate the behavior of a non-wetting drop flowing through
a pore formed by two spherical solid particles. In this objective, a
computational study that describes the deformation process of this
non-wetting spherical drop in viscous fluid immobile or moving
with uniform velocity Uc in the direction of gravity is conducted.
The fluids are assumed to be Newtonian and the flow based on the
Navier–Stokes equation is solved with the volume of fluid (VOF)
method. A parametric study highlighting the relevant importance
of the gap between the two solid spheres affecting the behavior of
the drop is realised.

2. Description of the problem

The flow domain is a parallelepiped container filled with a
viscous fluid (called hereafter carrier fluid and designed by the sub-
script c). This container has a square cross-section a2 and height h1
(Fig. 1). Two solid obstacles of spherical shape of diameter D are
fixed on two  opposite vertical walls of the box thus they form a
variable constriction whose the gap at the coordinate z obeys to
the following expression:

ez = e0 + D

(
1 −

√
1 − 4z2

D2

)
(1)

where e0 is the gap for z = 0.
Note that the position of these obstacles is not at the mid-height

of the container (the lower part is longer than the upper part). This
disposition permits a sufficient length to track the deformation pro-
cess and eventually the breakup process of the drop after it passes
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Nomenclature

a Cross-section size of the box
h1, h2, h3 Distance
D Obstacle diameter
d Drop diameter
Ud Drop velocity
Uc Carrier fluid velocity
� Dynamic viscosity
� Density
� Surface tension
Re Reynolds number
Bo Bond number
Ca Capillary number

the constriction. The narrowest constriction of size e0 is located in
the upper half of the container at a height h3 from the mid-height
of this container. Table 1 presents the values of the geometrical
parameters used numerically. This configuration is experimentally
reproduced for experiments based on the visualisation of the drop
in order to validate the numerical results.

The flow of the carrier fluid is permanent and occurs along the
gravity direction with a mean velocity called Uc. A drop of dense
fluid of diameter d is located, at the time t = 0, upstream of the
constriction at the distance h2 from the centre of the constriction
(the subscript d is assigned to the drop). The relative distance
between the drop and the constriction is h2−D/2

d = 0.7 (see Table 1
for the values). This distance seems to be low but we  have verified
that the influence of the presence of the constriction is not sensitive
yet. Furthermore, to avoid the influence of the exterior, we insure
at the initial time that the drop is completely immersed. In all the
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Fig. 1. Sketch of the problem.

Table 1
Values of the geometrical parameters (values in the second column are in mm,  in
the third column the values are non-dimensioned).

a 19.7 1
h1 59.1 3
h2 12.8 0.65
h3 11.8 0.6
D  15.8 0.8
d  6.9 0.35

Table 2
Physical properties of the immiscible fluids at 20 ◦C (the properties presented in this
table correspond to fluids used in the experiments: silicon oil for the carrier fluid
and glycerin oil for the drop).

drop carrier fluid

Density
(kg.m−3)

1245 973

Viscosity (Pa.s) 1.5 1.1
Surface tension
(N.m−1)

0.022

Contact angle
Glass/silicon
oil/glycerin oil

130◦

Mobility
(� = �d/�c)

1.36

simulations and experiments, the layer of the carrier fluid over the
top of the drop is about d/4. The main physical properties (density,
viscosity and surface tension) of both the carrier fluid and the drop
are assumed to be constant. The static contact angle between the
fluids and the walls of the obstacles of value 130◦ insures the drop
to be non-wetting. The values of these physical parameters are
summarized in Table 2.

The non-dimensioned numbers related to the flow of these
immiscible fluids are the Reynolds number of the carrier fluid (Rec)
the capillary number (Ca) and the Bond number (Bo). They are
defined respectively as:

Rec = �cUca

�c
; Ca = �cUc

�
;  Bo = gd2��

�

where �c, �c represent respectively the density and the viscosity
of the carrier fluid; �d and d are the density and the diameter of
the drop; the other parameters are the width of the box (a), the
interfacial tension � and the acceleration due to the gravity (g).

The velocity of the continuous fluid Uc is fixed to 5 mm.s−1 thus
the Reynolds number, and the capillary number are 0.09 and 0.25,
respectively. The Bond number is equal to 5.77. In these conditions,
the capillary force is neglected in front of viscous and gravitational
forces. Furthermore, according to results of Cristini et al. [5] in the
case of shear flow, the capillary number outside the constriction
(Uc = 5 mm.s−1, Ca = 0.25) is less than the critical capillary number
for the viscosity ratio (mobility) used (for mobility of 1.36 the crit-
ical capillary number of Cristini et al. is 0.48). Thus the breakup of
the drop can not occur upstream of the constriction.

It is worth noting that the value of the drop velocity settling
in an infinite static carrier fluid is given by the following formulae
[7,16]:

Ud∞ = gd2��

2�c

(1 + �)
(6 + 9�)

;

(
� = �d

�c

)
(2)

For the data presented in Tables 1 and 2, this velocity is equal to
Ud∝ = 7.47 mm.s−1.

To present the results in a dimensionless form, the following
dimensionless parameters are used:

• ez/d: ratio of the gap at the coordinate z (Eq. (1)) and the drop
diameter, useful to examine the influence of the confinement on
the deformation of the drop for a fixed drop diameter;

• e0/d: gap for z = 0, corresponding to the minimal gap size (nar-
rowest constriction);

• �/h2:dimensionless drop position in the fluid relatively to its ini-
tial position. The values used for the fluid domain lead to the
following range for �/h2(–0.38, 4.23). The value �/h2 = 1 corre-
sponds to the drop position at the narrowest constriction;

• ud−uc
ud∞

: dimensionless relative velocity of the drop (Ud is the
barycentric velocity of the drop).
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