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a  b  s  t  r  a  c  t

The  present  work  deals  with  a scale  bridging  approach  to the  curvatures  of  discrete  models  of structural
membranes,  to  be employed  for an  effective  characterization  of  the bending  energy  of  flexible  mem-
branes,  and  the  optimal  design  of  parametric  surfaces  and vaulted  structures.  We  fit  a  smooth  surface
model  to the  data  set  associated  with  the vertices  of a patch  of an  unstructured  polyhedral  surface.  Next,
we project  the  fitting  function  over  a structured  lattice,  obtaining  a ‘regularized’  polyhedral  surface.  The
latter  is employed  to  define  suitable  discrete  notions  of  the  mean  and  Gaussian  curvatures.  A  numerical
convergence  study  shows  that  such  curvature  measures  exhibit  strong  convergence  in the  continuum
limit,  when  the  fitting  model  consists  of polynomials  of  sufficiently  high  degree.  Comparisons  between
the  present  method  and  alternative  approaches  available  in  the  literature  are given.

©  2013  Elsevier  Ltd.  All rights  reserved.

1. Introduction

The elastic response in bending of structural and biological
membrane models is often described through surface energies
depending on the curvature tensor of the membrane (‘curvature
energy’, refer, e.g., to Helfrich, 1973; Seung and Nelson, 1988;
Helfrich and Kozlov, 1993; Gompper and Kroll, 1996; Discher et al.,
1997; Hartmann, 2010; Fraternali and Marcelli, 2012; Schmidt and
Fraternali, 2012). One of the most frequently employed bending
energy models is the so-called Helfrich energy, which has the fol-
lowing structure

Ebend =
∫

S

(
�H

2
Ĥ2 + �GK

)
dS

where S is the current configuration of the membrane; Ĥ is twice
the mean curvature H (i.e., the sum of the two principal curvatures);
K is the Gaussian curvature (the product of the two principal cur-
vatures); and �H and �G are suitable stiffness parameters (Helfrich,
1973; Seung and Nelson, 1988). Once �H and �G are given, it is clear
that the computation of such an energy entirely relies on the esti-
mates of the curvatures H and K. Membrane network models often
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make use of triangulated membrane networks, and short-range
or long-range pair interactions (Seung and Nelson, 1988; Marcelli
et al., 2005; Dao et al., 2006; Fraternali and Marcelli, 2012; Schmidt
and Fraternali, 2012). A correct estimation of the curvature energy
of such models plays a special role when modeling the mechanics of
heavily deformed networks (Espriu, 1987; Seung and Nelson, 1988;
Bailiie et al., 1990; Gompper and Kroll, 1996). Energy minimization,
surface smoothing and curvature estimation of discrete surface
models are also challenging problems of computational geometry,
and their physical, structural, and architectural implications attract
the interest of researchers working in different areas (refer, e.g., to
Bartesaghi and Sapiro, 2001; Bechthold, 2004; Pottman et al., 2007;
El Sayed et al., 2009; Pottman, 2010; Stratil, 2010; Fraternali, 2010;
Datta et al., 2011; Raney et al., 2011; Sullivan, 2008; Wardetzky,
2008). Polyhedral surfaces are frequently employed to discretize
parametric surfaces within CAD, CAE and CAM systems (Rypl and
Bittnar, 2006), and their regularization at the continuum is impor-
tant when dealing, e.g., with the parametric design and/or the
prototype fabrication of structural surfaces and vaulted structures
(Bechthold, 2004; Fu et al., 2008; Pottman et al., 2007; Stratil, 2010;
Datta et al., 2011).

The present work deals with a discrete-to-continuum approach
to the curvatures of discrete membranes models, which looks at the
continuum limits of suitable discrete definitions of such quantities.
It is known from the literature that numeric approaches of the cur-
vatures of polyhedral surfaces may feature oscillating behavior in
the continuum limit (weak convergence), in presence of arbitrary
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tessellation patterns (cf. e.g., the example in Fig. 4 of Wardetzky,
2008). The present approach aims to circumvent such convergence
issues, by fitting a smooth surface model to the data set associated
with the vertices of a patch of an arbitrary polyhedral surface. We
evaluate the fitting function at the nodes of a structured lattice,
generating a new polyhedral surface with ordered structure, and
‘regularized’ discrete definitions of the membrane curvatures. The
remainder of the paper is organized as follows. We  begin by briefly
recalling the mathematical definitions of the curvatures of smooth
membranes in Section 2. Next, we formulate the proposed regular-
ization procedure in Section 3. We  study the convergence behavior
of the given curvature measures with reference to a model prob-
lem (Section 4). We  draw the main conclusions the present work in
Section 5, where we also discuss potential applications and future
extensions of the current research.

2. Monge description of a membrane network

Let us consider a given discrete set XN of N nodes (or particles)
extracted from a membrane network, which have Cartesian coor-
dinates {xa1 , xa2 , za} (a = 1, . . .,  N) with respect to a given frame {O,
x1, x2, z ≡ x3} (Fig. 1). We  introduce a continuum regularization of
XN through the following Monge chart

zN(x) =
∑N

a=1
zaga(x), (1)

where ga are suitable shape functions, and x = {x1, x2} denotes the
position vector in the x1, x2 plane.

The Monge map  (1) is defined locally when dealing with com-
plex surfaces and/or closed membranes. In such a case, the axes
{x1, x2} are conveniently drawn on a plane perpendicular to a
local estimate of the normal to the corresponding surface (refer,
e.g., to (Fraternali et al., 2012) for a detailed illustration of such
a covering technique). We  name ‘platform’ the orthogonal pro-
jection of XN onto the x1, x2 plane, and we look at x1 and x2 as
curvilinear coordinates of the membrane. If the shape functions
ga are sufficiently smooth, it is an easy task to compute the first
fundamental forms a˛ˇ and the second fundamental forms b˛ˇ

of zN (refer, e.g. to Kühnel, 2002; Fraternali et al., 2012). The
unit tangents �〈1〉, �〈2〉 to the lines of curvature, and the prin-
cipal curvatures k1, k2 are then obtained from the eigenvalue
problem

(b˛ˇ − k� a˛ˇ)�ˇ
(�) = 0 (� = 1, 2) (2)

3. A bridging scale approach to the curvatures of
polyhedral surfaces

In the special case of a polyhedral membrane, the definition of
the fundamental forms and principal curvatures relies on a suit-
able generalized definition of the hessian of zN, i.e., the second
order tensor HzN with Cartesian components zN,˛ˇ

(we let zN,˛

denote the partial derivative of zN with respect to x˛). Indeed,
in such a case, the shape function ga are piecewise linear func-
tions, and the second-order derivatives of the Monge map  (1) exist
only in the distributional sense (refer, e.g., to Davini and Paroni,
2003; Sullivan, 2008; Wardetzky, 2008). Throughout the rest of the
paper, we focus our attention on a triangulated membrane net-
work, letting ˘N indicate the triangulation that is obtained by
projecting such a network over the platform ˝.  We denote the
position vector of the generic node of ˘N by xn, and the corre-
sponding coordination number by Sn. In addition, we  indicate the
edges attached to xn by � 1

n , . . .,  � Sn
n ; and the unit vectors perpen-

dicular and tangent to such edges by h1
n, . . .,  hSn

n , and k1
n, . . .,  kSn

n ,
respectively (Fig. 1). Beside ˘N, we introduce a dual mesh of ˝,

which is formed by polygons connecting the barycenters of the tri-
angles attached to xn to the mid-points of the edges � 1

n , . . .,  � Sn
n

(‘barycentric’ dual mesh, cf. Fig. 1). We say that ˘N is a structured
triangulation of  ̋ if, given any tensor H independent of position, it
results
Sn+1∑
j=1

∫
Gn

H(x − xj
n) · (x − xj

n)∇gj
n ⊗ ∇gn = 0 (3)

in correspondence with each node xn. Here, x1
n, . . .,  xSn

n are the
nearest neighbors of xn; xSn+1

n = xn; Gn is the union of the trian-
gles attached to xn; and gj

n is the shape function associated with xj
n

(refer, e.g., to the benchmark examples shown in Fig. 2).
A discrete definition of the hessian of a polyhedral surface zN

is obtained by introducing a piecewise constant tensor field HNzN

over the dual mesh ˆ̆
N , which takes the following value over the

generic dual cell ˆ̋ n (cf. e.g., Fraternali et al., 2002; Fraternali, 2007)

HNzN(n) = 1

| ˆ̋ n|

Sn∑
j=1

�j
n

2

[[
ızN

ıh

]]j

n

hj
n ⊗ hj

n (4)

Here, [[ızN/ıh]]j
n indicates the jump in the directional derivative

∇zN · hj
n across the edge � j

n, and �j
n denotes the length of � j

n. It is
worth noting that the trace of HNzN(n) provides a discrete definition
of the Lapalacian of zN (refer to Davini and Paroni, 2003; Fraternali,
2007 for further details). We  associate the discrete hessian HNzN(n),
and the following weighted gradient (Taubin, 1995)

∇NzN(n) = 1

3| ˆ̋ n|

Sn∑
j=1

∇zj
N |Tj

n| (5)

to the generic node of ˘N. In (5), ∇zj
N denotes the gradient of zN

over the jth triangle attached to xn, and |Tj
n| denotes the area of such

a triangle.
Let us consider now families of triangulations ˘N that show

increasing numbers of nodes N, and are such that the mesh size hN =
sup˝m∈˘N

{diam(˝m)} approaches zero, as N goes to infinity. We
associate a polyhedral surface zN(x) to each of such triangulations,
by projecting a given smooth surface map  z0(x) over ˘N. Referring
to structured triangulations, it can be proved that the sequence of
the discrete hessians HNzN converges to the hessian of z0, as N goes
to infinity (cf. Lemma  2 of Fraternali, 2007). Unfortunately, such a
nice convergence property is not guaranteed if the triangulations
˘N do not match the property (3) (‘unstructured triangulations’). Let
Kn denote a ‘patch’ of an unstructured triangulation ˘N, which is
formed by the k nearest neighbors of x-n, k ≥ 1 being a given inte-
ger. In order to tackle convergence issues, we construct a smooth
fitting function f̃n(x) of the values taken by zN at the vertices of
Kn. Next, we evaluate f̃n(x) at the vertices x̃1,. . .,x̃Ñ of a second,
structured triangulation ˜̆ n of the platform (or a portion of ˝
comprising xn), and build up the following ‘regularized’ polyhedral
surface

z̃n =
Ñ∑

m=1

f̃n(x̃m)g̃m (6)

The fitting model f̃n might consist of suitable interpolation polyno-
mials associated with Kn, local maximum entropy shape functions,
B-Splines, Non-Uniform Rational B-Splines (NURBS), or other fit-
ting functions available in standard software libraries. In (6), g̃m

denotes the shape function associated with the current node x̃m ∈
˜̆ n. By replacing zN with z̃n in Eqs. (4) and (5), we finally endow

xn with a regularized discrete hessian HNz̃N(n), and a regularized
discrete gradient ∇Nz̃N(n). Straightforward manipulations of the
above gradients and hessians lead us to generalized notions of the
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