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In this paper we generalize the Perzyna’s type viscoplasticity using fractional calculus. We call such
model fractional viscoplasticity. The main objective of this research is to propose a new way of descrip-
tion of permanent deformation in a material body, especially under extreme dynamic conditions. In
this approach the fractional calculus can be understood as a tool enabling the introduction of material
heterogeneity/multi-scale effects to the constitutive model.

This newly developed phenomenological model is represented in the Euclidean space living more gen-

Keywords:

Viscoplasticity

Fractional calculus
Phenomenological models

eral setup for future work. The definition of the directions of a viscoplastic strains stated as a fractional
gradient of plastic potential plays the fundamental role in the formulation. Moreover, the fractional gra-
dient provides the non-associative plastic flow without necessity of additional potential assumption.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Despite the fact that in most recent years micromechanical
models describing material behavior are widely considered (cf.
Stupkiewicz and Petryk, 2010; Coenen et al., 2012; Tasan et al.,
2012) there is still need for new concepts in phenomenology
particularly for models dedicated for extreme dynamic events
(Sumelka and todygowski, 2011; Rusinek et al., 2007). In prin-
cipal, micromechanics provides naturally deeper insight into the
physical phenomena being considered but from the other point
of view it appears that such formulations are still not suitable for
extreme dynamic processes where wave effects play fundamen-
tal role and also current software/hardware capabilities are not
good enough. On the other hand the most important drawback
in phenomenology, in contrary to micromechanics, is that many
material parameters need to be identified for practical applications
when many phenomena are considered (e.g. thermo-mechanical
coupling including anisotropic description of damage or phase
transformations) (Eftis et al., 2003; Glema et al., 2009; Sumelka,
2009). Hence, the crucial tasks for research in the are of pheno-
menology is to simplify material functions considered or develop
additional techniques such as soft computing reducing the num-
ber of considered material parameters (Sumelka and Lodygowski,
2013a). It is shown that to some extend fractional viscoplastic-
ity can be viewed as a solution to described circumstances. In
other words fractional calculus can be understood as a tool for
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introduction of material heterogeneity/multi-scale effects to the
constitutive model (Sumelka, 2013a).

Independently of chosen technique describing experimentally
observed body behavior the fundamental question arises: do we
use correct mathematical tools for the description of the mate-
rial body deformation? More precisely in aspect of the subject
of this paper: are commonly used differential operators in the
particular model correctly assumed to be of integer order or one
should choose more general one, namely the differential operators
of an arbitrary order? The answer to such question is not obvi-
ous. Considering many successful applications of fractional calculus
in Fluid Flow, Rheology, Dynamical Processes in Self-Similar and
Porous Structures, Diffusive Transport Akin to Diffusion, Electrical
Networks, Probability and Statistics, Control Theory of Dynamical
Systems, Viscoelasticity, Electrochemistry of Corrosion, Chemi-
cal Physics, Optics and others (Podlubny, 1999; Tarasov, 2008;
Mainardi, 2010 and cited therein) one can be more than sure that
in the theories describing permanent deformation of a body, such
as viscoplasticity/plasticity, the use of fractional calculus should be
appropriate.

In several papers (Sumelka, 2012a,b) the original idea of
fractional viscoplasticity is introduced. Fractional viscoplasticity is
generalization of classical Perzyna’s type viscoplasticity (Perzyna,
1963) using fractional calculus. The fundamental role in the
formulation plays the definition of the directions of a viscoplastic
strains given as a fractional gradient of plastic potential. In this
way one obtains a flexible tool that controls viscoplastic strain
evolution (magnitude and directions) without necessity of adding
explicitly new phenomena to the constitutive structure. Moreover,
by introducing the new parameter to the model (order of deriva-
tive) we simultaneously obtain the non-associative plastic flow
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(in general) without necessity of additional potential assumption.
This way we we decrease the number of material functions and
simultaneous parameters. Classical Perzyna’s solution is obtained
as a special case - when order of fractional gradient is assumed to
be equal to one.

As opposed to the previous works (Sumelka, 2012a,b) this paper
provides complete description of this topic. Different fractional
differential operator for fractional gradient of plastic potential is
applied as well. Thus, fractional viscoplasticity can be redefined
using different definitions of fractional derivative. In this sense
there should exist optimal definition of derivative for a specific
material, such as steel, rubber or concrete. As an example, the def-
inition of classical Riesz-Feller fractional operator (Feller, 1952)
(not discussed here) has an origin in processes with Lévy stable
probability distribution. In this sense it should be possible to define
fractional differential operator in such a way that it carries infor-
mation about the distribution of grains sizes in a particular metal.

The paper is divided into three main parts.

In Section2 fundamental concepts of fractional calculus are
presented to justify assumptions imposed during the fractional
viscoplasticity definition.

The fractional viscoplasticity in Euclidean space, leaving more
general setup for future work, is defined in Section 3 along with
the fractional viscoplatic strain gradient of Caputo’s type. Because
the fractional derivative is defined on interval (contrary to standard
definition of derivative in a point) so called “short memory” prin-
ciple (Podlubny, 1999) is utilized to make bounds of this interval
with clear physical interpretation.

In Section4 illustrative example showing the dependence of
the direction of the viscoplastic flow plotted against the order of
fractional gradient is discussed to prove that in general the non-
associative plastic flow without necessity of additional potential
assumption is obtained.

2. Fractional calculus - fundamental concepts

The theory of derivatives of non-integer order was initiated on
30th of September 1695 when Leibniz showed his concerns about
the L'Hospital’s derivative of order one and a half (Leibniz, 1962).
The breakthrough sentence by Leibniz stated: “It will lead to a para-
dox from which one day useful consequences will be drawn”. Since
that day fractional calculus became an individual branch of pure
mathematics with many successful applications. It was discussed in
many comprehensive encyclopedic-type monographs e.g. (Samko
etal., 1993; Podlubny, 1999; Kilbas et al., 2006; Leszczynski, 2011).

Although there are numerous definitions for fractional differen-
tial operators they share the common attribute: they are defined
on an interval in contrary to the integer order differential opera-
tors defined in a single point. The most commonly used are those
defined by generalization of n-fold integration or n-fold derivative.
To understand the idea let us consider the n-fold integration of a
function f which is given by

1

t
FEn() = W/ (t— )" 'f(r)dr, t>a, neN, (1)

where I is the Euler gamma function defined as (a is arbitrary)
MNa) = / ette-1dt. (2)
0

Notice that if in Eq. (2) we apply o =n < N\{0} we have
I'(n)=(n-1)!.Now, if we replace in Eq. (1) n with an arbitrary o >0

we obtain (left) fractional integral operator in Riemann-Liouville
(RL) sense
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t
df(t) = W/ (t—0)* f(r)dr, t>a, neR'. (3)

Based on relation Eq. (3) one can define the following fractional
derivatives (left sided)

RLD2F(t) = D™(al™2f )(1), (4)
EDEf(t)=al™*(D™F (L), (5)

where m=[a]+1, RED¥f(t) and {D¥f(t) defines fractional deriva-
tives in Riemann-Liouville (RL) and Caputo (C) sense, respectively.

As already mentioned the derivatives of an arbitrary order (even
complex) are defined on an interval, thus one can define so called
left and right sided derivatives. Considering Caputo (C) type deriva-
tive (the one used during fractional viscoplasticity definition) as an
example, the explicit definitions are: left-sided Caputo’s derivative
fort>aand n=[a]+1

t
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and right-sided Caputo derivative for t<b and n=[a]+1
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where «>0 denotes the real order of the derivative, D denotes
‘derivative’and a, t, b are so called terminals. Notice that both defini-
tionsinclude integration over the interval (q, t) or (¢t, b), respectively.
The terminals a and b can be chosen arbitrarily. Nevertheless, for
fractional viscoplasticity definition we will use so called “short
memory” principle (Podlubny, 1999) for terminal definition for
clearer physical interpretation. It is clear that terminals must not
be constant during the deformation - e.g. they can be a function of
state variables.

As an illustrative example let us consider Caputo derivative of a
power function f(t)=(t —a)’, in this case we have

T(v+1)
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or optionally for f(t)=(b —t)" we have
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and important result in case f{(t)=C=const.
£DYC=(DFC =0. (10)

In general any type of the fractional derivative of a constant
function is not equal to zero (Caputo’s derivative is an exception
Eq. (10)). It is also fundamental that using Caputo’s type deriva-
tive one needs standard (like in the classical differential equations)
initial and/or boundary conditions, while for other types of frac-
tional derivatives (e.g. RL) they are of a different type dependently
of chosen definition.

Finally, let us define the Caputo’s type derivative for interval
te(a, b). We call such derivative Riesz—Caputo (RC) derivative cf.
(Frederico and Torres, 2010). This type of fractional derivative is
crucial for further definition of directions of viscoplastic strains.
Since any linear combination of derivatives Egs. (6) and (7) defines
new derivative (Samko et al., 1993), we put for t € (a, b) C R, «>0
and n—1<a<n (Agrawal, 2007) (when « is an integer, the usual
definition of a derivative is used cf. (Agrawal, 2007; Frederico and
Torres, 2010))
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