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a  b  s  t  r  a  c  t

An  orthotropic  elastic  shell  model  is  developed  to study  the vibration  characteristics  of  curved  graphene
ribbons  (CGRs).  The  effect  of  a small  length  scale  is incorporated  in  the formulations  using  the gradient
elasticity  theory.  Novozhilov’s  linear  shallow  shell  theory  is  used  and  it is  assumed  that  CGR  is  simply
supported.  Analytical  solution  to the  equations  is  proposed  to obtain  the  frequencies  of  CGRs.  The  vibra-
tional  properties  of  CGRs  are  investigated  with  respect  to the variations  of  various  parameters.  Results
indicate  significant  dependence  of natural  frequencies  on  the curvature  change  as  well as the  modes
being  considered.

© 2013  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The carbon-based nanostructures such as fullerene (Kroto et al., 1985), carbon nanotube (Iijima, 1991) and graphene (Novoselov et al.,
2004) have been received enormous attention in recent years due to the wide diversity of their structural forms and unusual properties. The
varieties of carbon nanostructures such as spheres, cylindrical tubes and planes have different behavior in relation to the dimensionality
of the system. Recently, a new type of carbon-based nanostructures which is called curved graphene ribbon (CGR) has been studied
by different researchers (Kholmanov et al., 2009; Kato et al., 2010; Gosálbez-Martínez et al., 2011; Belonenko et al., 2011). CGR is an
intermediate structure between a carbon nanotube and a flat graphene sheet (Fig. 1). Recently, the fabrication of curved graphene ribbons
has been reported by unzipping carbon nanotubes (Kosynkin et al., 2009; Jiao et al., 2009). This opens the way toward the study of the
effect of curvature on the behaviors of graphene ribbons.

Right now, the CGR’s electronic and magnetic properties have been widely studied. For example, the electronic properties of electrons in
flat and curved zigzag graphene nanoribbons have been investigated using a tight-binding model within the Slater Koster approximation,
including spin–orbit interaction (Gosálbez-Martínez et al., 2011). In another work, Belonenko et al. (2011) studied the electronic spectrum
and tunneling current in curved graphene nanoribbons. However, the CGR’s vibrational properties and the Raman spectra are not studied
at the present time although they are important.

For mechanical modeling of the nanostructures, the classical (local) continuum models are deemed to fail, because these models only
contain bulk material properties and the material properties related to microstructures are neglected. Hence, these local theories are unable
to depict the influence of nanoscale effects when the size of a body enters into the micro- or nano-range. To deal with size-dependent
material properties, the classical elasticity theory has been extended from various viewpoints. Different non-classical theories such as
couple stress theory (Mindlin and Tiersten, 1962; Toupin, 1964), Cosserat continuum (Yoshiyuki, 1968), nonlocal elasticity (Eringen, 1983)
and gradient elasticity (Aifantis, 2009) have been developed. The gradient elasticity theory provides extensions of the classical equations
of elasticity with additional higher-order spatial derivatives of strains, stresses and/or accelerations (Askes and Aifantis, 2011). It seems
that the gradient elasticity theory could potentially play a useful role in analysis related to micro/nano sized structures. Therefore, several
researchers have applied the gradient elasticity for the mechanical analysis of the nanostructures in more recent years (Samaeia et al.,
2011; Wang, 2010; Danesh et al., 2012; Shen et al., 2012).
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Fig. 1. Perspective view of a curved graphene ribbon (CGR).

Motivated by the above discussions, we investigate the vibrational properties of CGRs from the modified shell model for the first time
in the literature. In this study, the gradient elasticity theory with two  scale parameters is used to modify the classical shell model. It would
appear that gradient elasticity theory could potentially play a useful role in analysis related to nanotechnology applications (Aifantis, 2009).
The present work explores this potential in the context of a specific application. The displacement amplitudes are assumed to be small
and so linear Novozhilov’s shallow shell theory is used and the end conditions are considered simply supported at all sides of CGRs. The
Novozhilov theory is known as a highly reliable theory that can be used for most shapes regardless of the size of their cross-sectional radius.
The orthotropic properties of the graphene have been reported by Chang (2010). Therefore, the material properties of CGRs are assumed
to be orthotropic here. The displacement form of the governing equation is developed and analytical solution is obtained. Moreover, the
vibrational characteristics for both the flat and curved graphene ribbons are compared. This model is then used to study the effects of
various parameters such as the radius of curvature, widths and length scale parameters on the natural frequencies of CGRs. We  hope this
investigation will be helpful for interesting and potential applications of CGRs in future.

2. Formulation

2.1. Gradient elasticity

The gradient elasticity theory was developed by combining Eringen stress-gradient and stable strain-gradient theory. This theory
incorporates more than one length scale. The constitutive relations of the gradient elasticity can be written as follows (Askes and Aifantis,
2009):

(1 − l2d∇2)�ij = Cijkl(1 − l2s ∇2)εkl (1)

where ls is the relevant length scale for statics and ld is the length scale that is added for using in dynamics. �ij and εkl are the components
of stress and strain tensors, respectively. Cijkl is assumed to represent the component of fourth-order linear elastic material tensor and ∇2

denotes Laplacian operator. The two length scales can be related to the size of the Representative Volume Element (RVE) in statics and
dynamics (Gitman et al., 2005; Bennett et al., 2007). Generally, ls is not identical to ld. When ld = 0 the theory is a special form of Mindlin’s
strain gradient elasticity and when ls = 0 the theory reduces to Eringen’s stress gradient elasticity theory. In addition, the gradient elasticity
in the vanishing limit of ld, ls reverts to classical elasticity, which can be seen by letting ld, ls → 0 in Eq. (1), to obtain generalized Hook’s
law of classical elasticity.

2.2. Orthotropic elastic shell model for CGRs

CGR is considered as a circular cylindrical panel with an equivalent thickness h and mean radius R (Fig. 2). The panel is assumed to be
homogeneous but orthotropic. It is assumed that the initial stress due to the curvature of CGR is relaxed. A curvilinear coordinate system
(x1, x2, x3) is considered. The displacements of an arbitrary point of coordinate (x1, x2) on the middle surface of CGR are denoted by u, v
and w,  in the x1, x2 and x3 directions, respectively. The strain components ε11, ε22 and ε66 at an arbitrary point of CGR are related to the
middle surface strains e1, e2 and e6 and to the changes in the curvature and torsion of the middle surface k1, k2 and k6 by the following
three relationships

ε11 = e1 + x3k1 ε22 = e2 + x3k2 ε66 = e6 + x3k6 (2)
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