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a  b  s  t  r  a  c  t

In this  paper,  we present  fundamental  solutions  for  the  inhomogeneous  half-plane  under  anti-plane
strain  conditions  subjected  to a point  force  and  two  dipoles.  Time-harmonic  conditions  are  assumed
to  hold,  while  the boundary  conditions  comprise  a  traction-free  horizontal  surface  plus  the  Sommer-
feld  radiation  condition.  The  aforementioned  fundamental  solutions  are  derived  for  two  special  types  of
continuous  material  inhomogeneity,  whereby  the shear  modulus  and  the density  vary  either  as  an  expo-
nential  function  or  as a  quadratic  polynomial  with  respect  to  depth.  These  solutions  converge  to  their
static  equivalents  as  the  frequency  of  vibration  approaches  zero,  and  collapse  to  the  ones  corresponding
to  the homogeneous  half-plane  when  the  inhomogeneity  parameter  is  set to  zero.  Finally,  a  numerical
example  serves  to  illustrate  the  fundamental  solutions  obtained  herein.

© 2013  Elsevier  Ltd.  All rights  reserved.

1. Introduction

The recovery of fundamental solutions (or Green’s functions)
for some canonical problems in elastodynamics (Kausel, 2006) has
spurred the development of boundary integral equation methods
as one of the most successful numerical tools for solving wave
propagation and scattering problems in infinite, semi-infinite
and finite domains (Dominguez, 1993). Fundamental solutions
are most often particular solutions of the differential operator in
question for point forces in space and time applied to unbounded
domains. In turn, they serve as kernel functions in integral equa-
tion formulations that are redefined for both source (where the
point load is applied) and receiver (where the signal is measured)
ascending to the surface of the elastic body in question. These sin-
gular boundary integral equations (BIE) are defined in the Cauchy
principal value sense and subsequent numerical discretization of
all surfaces in question allows for the solution of boundary value
problems with important applications in mechanics, geotechnics,
seismology, etc. Green’s functions can of course be used directly
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in numerical applications, giving rise to specialized methods such
as the wave number integration method. Advantages of boundary
element methods, namely the numerical version of BIE, over
domain-type methods such as finite elements stem from the fact
that surface-only meshes are necessary, the radiation condition
is automatically accounted for and use of the Green’s functions
yields high accuracy in the results obtained.

Green’s function for elastic and isotropic continua is a classi-
cal problem, see Kausel (2012). The first important step in their
derivation was  the introduction of a free surface so as to model the
half-space (i.e., Lamb’s problem, early 20th century), opening the
door for important applications involving the surface of the earth
and the free surface of seas. The next step was  to introduce layer-
ing and other types of inhomogeneities in the elastic continuum so
as to realistically model natural or certain categories of man-made
materials, see Ewing et al. (1957). Since then, many specialized fun-
damental solutions have been produced by considering variable
mechanical properties, anisotropy, coupled fields such as poroe-
lasticity and so on (see Rangelov et al., 2005 for a more detailed
account).

The present work is a continuation of an earlier derivation
(Rangelov and Manolis, 2010) of Green’s functions for the scalar
wave equation defined in the half-space with a quadratic-type of

0093-6413/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mechrescom.2013.12.005

dx.doi.org/10.1016/j.mechrescom.2013.12.005
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2013.12.005&domain=pdf
mailto:rangelov@math.bas.bg
mailto:rangelov@yahoo.com
dx.doi.org/10.1016/j.mechrescom.2013.12.005


T.V. Rangelov, G.D. Manolis / Mechanics Research Communications 56 (2014) 90–97 91

material inhomogeneity, assumed to hold proportionally for both
shear modulus and density. In here, we derive the contribution of
dipoles to this Green’s function that was originally defined for a
point source, and furthermore examine a material inhomogeneity
of the exponential-type.

The scalar wave equation for non-homogeneous, elastic con-
tinuous media has been studied by many researchers. In here, we
mention the early work of Bhattacharya (1970) who  presented
a rather thorough classification of inhomogeneities in either the
material velocity, the elastic modulus or the density, for which
analytical solutions are possible. This type of approach, whereby
one investigates possible mathematical variations of the mate-
rial parameters that lead to standard types of partial differential
equations, and hence to known solutions in terms of special func-
tions, has since been followed by other researchers. For instance,
Kuvshinov and Mulder (2006) derived an exact solution for a linear
velocity profile and a density obeying a power law.

Green’s functions for the inhomogenous, elastic half-plane need
to satisfy an extra boundary condition in the form of a traction-free
horizontal surface. The usual approach is to consider this constraint
directly, which adds extra correction terms to the Green’s func-
tion for the full-space. These terms tend to decay rapidly for points
far from the free surface, causing the solution to converge to that
for the full space. In this context, we mention the work of Vrettos
(1985) who derived a Green’s function for the elastic half-space
corresponding to a bounded exponential variation of the shear
modulus with respect to the depth coordinate. It is also possible to
construct approximate Green’s functions by superposition of more
elementary forms, such as the Gaussian beam which is a ray-type
approximation. For instance, Wu (1985) approximated the Green’s
function for a smoothly inhomogeneous medium by a bundle of
overlapped Gaussian beams, a representation that is similar to a
uniform asymptotic representation.

When geophysical applications are of interest, it becomes nec-
essary to introduce more realistic material representations, and
this primarily is anisotropy. For instance, Psencik (1998) derived
a Green’s function comprising a zero order plus a first order term
for the unbounded inhomogeneous, and weakly anisotropic, con-
tinuum. These terms are derived from an asymptotic solution of the
governing equations expanded in terms of two small parameters,
one used in conjunction with the standard ray method and a second
used as a measure of the deviation between the anisotropic mate-
rial and the background isotropic one. A more general solution for
the Green’s tensor corresponding to a fully anisotropic and inho-
mogeneous medium, but as a far-field frequency approximation,
was derived by Ben-Menahem and Sena (1991).

Finally, as one looks at BEM formulations in order to exploit
available Green’s functions, we mention the related work of Brun
et al. (2003a,b) on non-linear elasticity under quasi-static condi-
tions. These material models allow for the analysis of instability
phenomena in the material, such as the computation of bifurca-
tion loads and their deformation modes. These derivations were
extended by Bigoni et al. (2007) to cover dynamic problems in the
form of time-harmonic, small amplitude vibrations of pre-stressed
elastic solids that are incompressible and orthotropic. This is basi-
cally the motivation for deriving specialized Green’s functions,
because a BEM formulation will allow for the efficient solution of
complex BVP of engineering importance.

In this work, we present a Green’s function for the half-plane
under anti-plane strain conditions for two specific types of continu-
ous inhomogeneity, namely quadratic and exponential dependence
of the material properties on the depth coordinate. The methodol-
ogy follows the procedure initiated in Manolis and Shaw (1996) for
the full plane, whereby an algebraic transformation of the equa-
tions of motion produces a series of extra terms in the differential
operator. Subsequent annulment of these terms yields a system of

Fig. 1. Harmonic wave propagation due to a point force and dipoles in the inhomo-
geneous half-plane under anti-plane strain conditions.

constraint equations on admissible forms of inhomogeneity, which
render the remaining problem mathematically similar to retriev-
ing fundamental solutions for a homogeneous continuum. In what
follows, we derived solutions for a point source and dipoles (in the
sense of R. Mindlin) in this special type of continuously inhomoge-
neous half-plane under time harmonic conditions. Limiting forms
of these Green’s functions for quasi-static conditions and for the
homogeneous continuum are also produced. Finally, a numerical
example for a soil material serves to illustrate the use of these solu-
tions and to juxtapose the difference between wave propagation in
continuously homogeneous versus inhomogeneous media.

2. Statement of the problem and solution method

We introduce a Cartesian coordinate system Ox1x2 and define
the half-plane R2− = {x = (x1, x2), x2 < 0}. Function h(x) is also
defined in R2−, depends only on x2 and h(x) > 0, h(x) ∈ C2(R2−), as
shown in Fig. 1. With �0 > 0, �0 > 0 as the reference values for
the shear modulus and the density, respectively, we further define
�(x) = h(x)�0, �(x) = h(x)�0.

The constitutive equations for the anti-plane case are

�i(x, ω) = �(x)u,i(x, ω). (1)

Here, �i(x, ω) are the out-of-plane shear stress components, �(x) is
now the position dependent shear modulus, u(x, ω) is the out-of-
plane displacement, index i = 1, 2, ω is the frequency of vibration
and commas denote spatial derivatives. The corresponding equa-
tion of motion in the frequency domain is

Lh(u) ≡ �i,i(x, ω) + �(x)ω2u(x, ω) = f (x) x ∈ R2
−, (2)

where �(x) is the position dependent density, f(x) is the external
body force and summation under repeated indexes is implied.

Assume that f is a force along the Ox3-direction with support at
a point � ∈ R2− in the form

f (x, �) = f0ı(x, �) + fjı,j(x, �) x, � ∈ R2
−, (3)

where ı is Dirac’s function and f0 is a force per unit volume, while
f1 and f2 are moments per unit volume.

Consider next a traction free boundary condition along the free
surface x2 = 0

t(x, ω)|x2=0 = 0 (4)

where t = �ini, is the out-of-plane tangential traction, and n = (n1,
n2) is the unit normal vector.
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