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a  b  s  t  r  a  c  t

Of  interest  in  this  work  is the description  of unidirectional  fibre-reinforced  composites  where  special
emphasis  is placed  on the  fibre  breakage  damage  mode.  A  simple,  but  efficient,  yield  concept  is adopted
within  the  continuum  damage  mechanics  framework  where  damage  flow is  directly  linked  to  the  strain
history  along  the direction  of  the  fibres.  The  modeling  is embedded  into  a  formulation  of transverse
isotropy  that keeps  the fibre-damage  modeling  unchanged  when  coupled  to other  phenomena  that  solely
affect  the  pure  shear  part  of  the behavior.  In fact, it is  mostly  observed  that  creep  in fibre-reinforced
composites  is  essentially  due  to  the matrix  constituent  whose  role  is  to deform  and  support  stresses
primarily  in  shear.  This  specific  example  is detailed  in  the  present  paper  for illustrative  purposes  where,
among  others,  the occurrence  of  tertiary  creep  is  made  possible  to  predict.  On  the  numerical  side,  the
algorithmic  design  is  developed  for a straightforward  implementation  within  the  context  of  the finite
element  method.

© 2013  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Composite materials belong to a very important class of mate-
rials which are employed in a wide range of industrial applications
and, recently, are gaining more interest in civil engineering concep-
tions. The particular case of fibre-reinforced composites consists
of fabric structures where fibres are continuously arranged in a
matrix. As a consequence, the characteristic macroscopic behavior
exhibits strong directional dependencies.

Damage can significantly reduce structural stiffness before
eventual catastrophic failure. It is then of interest to build predictive
tools within an appropriate modeling framework to ensure maxi-
mum security and serviceability of the structures. During the recent
decades, an extensive research activity has been noticed on these
lines. For instance, various micromechanical models have been pro-
posed in the literature that consider the mechanical behavior of
the composites constituents, i.e. the fibre, the matrix and their
interaction, see for example Carvelli and Taliercio (1999), Ohno
et al. (2002) and Okabe et al. (2005), see also the review paper by
Herakovich (2012). On the other hand, phenomenological models
have also been proposed that are mostly based on the concept of
continuum damage mechanics, see for example Matzenmiller et al.
(1995) and Voyiadjis and Deliktas (2000) among many others. The
latter approach is followed in the present paper as well.
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Attention is devoted in this work to unidirectional fibre-
reinforced composites. The material is then transversely isotropic
with respect to the single privileged direction of the fibres, and the
anisotropy is here captured by a strain energy expressed in terms
of the so-called integrity-basis as proposed by Spencer (1984). This
basis consists of invariants of the strain tensor together with invari-
ants of tensor products of the strain with the structural tensor,
the latter being the dyadic product of the above fibres direction.
It is worth mentioning that the formalism of the integrity basis has
otherwise been widely employed in the finite strain range, among
others, see for example Kaliske (2000), Reese (2003), Klinkel et al.
(2005), Sansour et al. (2006), Merodio and Goicolea (2007) and
Nedjar (2007).

Remaining in the context of the small strain theory, the five
Lamé-like elastic moduli will be degraded with damage accumu-
lation. A fibre-breakage damage mode is considered in this paper
which is directly linked to the strain history along the direction
of the fibres. Additional damage phenomena such as, debonding
are out of the scope of this paper. They will be the object of future
works. The failure of the composite matrix is also taken into account
as the evolution of damage affects the whole set of the elastic
constants. Among others, we  discuss the choice of a simple and
efficient yield criterion together with the companion constrained
flow rule that controls the damage evolution. In particular, we con-
sider that, along the fibres, damage occurs only in tension and no
damage takes place in compression.

On another hand, it is well known that long-term as well as
short-term matrix creep can occur. Matrices experience creep
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primarily due to shearing. It is then of importance to take into
account this fact in an unified modeling framework. Within the
aforementioned formulation, this behavior has recently been cap-
tured in Nedjar (2011). As shown, the constitutive law can be
decomposed into fibre-directional, transverse, and pure shear
parts. Viscoelasticity is then introduced such that it solely affects
the pure shear part of the behavior. In parallel to the theoreti-
cal developments, the numerical integrations of the whole sets
of local evolution equations are addressed throughout the paper
for a straightforward implementation within the finite element
method.

Notation: Throughout the paper, bold face characters refer
to second- or fourth-order tensorial quantities. In particular, 1
denotes the second-order identity tensor with components ıij (ıij
being the Kronecker delta), and I is the fourth-order unit ten-
sor of components Iijkl = 1/2(ıikıjl + ıilıjk). The double dot symbol
‘:’ is used for double tensor contraction, i.e. for any second order
tensors A and B, A : B = tr[ ABT] = AijBij where, unless specified,
summation on repeated indices is always assumed. One has the
property tr[(·)] = [(·) : 1] for the trace operator “tr”. The notation ⊗
stands for the tensorial product, i.e. ( A ⊗ B)ijkl = Aij Bkl. For any two
vectors �U and �V , the second-order tensor �U ⊗ �V is of components
( �U ⊗ �V)ij = UiVj . Furthermore, the dot operator (· ) always refers to
the time derivative.

2. Linear elasticity formulation

In all what follows, we denote by �V the unit vector that
characterizes the fibre direction of a one-family fibre-reinforced
composite. This vector of components Vi (i = 1, 2, 3) with respect to
a fixed global Cartesian basis, say {�ei}i=1,2,3, is regarded as a continu-
ous function of the position. The fibre’s direction is not necessarily
the same at each point and, hence, the material is in fact locally
transversely isotropic with respect to this single preferred direc-
tion. In the same way, we also introduce the continuous tensor field
of the micro-structure defined by the dyadic product M = �V ⊗ �V .
Notice the useful property Mn = M for any integer n > 0, i.e. M is
idempotent.

In this work, the anisotropy is captured by the integrity-basis
formulation as introduced by Spencer (1984). Briefly, the strain
energy, that is denoted here by W, is expressed in terms of invari-
ants. For the particular case with one family of fibres, the basis
of three characteristic quantities of isotropy extends to five irre-
ductible invariants

I1 = tr[ε], I2 = ε : ε, I3 = det[ε], I4 = ε : M, I5 = ε2 : M

(1)

where ε is the infinitesimal strain tensor, det[·] designating the
determinant operator.

Within the linear theory, the strain energy is quadratic with
respect to the strain tensor ε and, hence, independent of the cubic
invariant I3, i.e. W ≡ W(I1, I2, I4, I5). Its most elegant expression is
given by,

W = 1
2

� I2
1 + �T I2 +  ̨ I1I4 + 2(�L − �T ) I5 + 1

2
 ̌ I2

4 (2)

where the five independent material parameters �, �T, �L, ˛
and  ̌ are Lamé-like elastic constants, see also Holzapfel (2000),

Kaliske (2000) and Nedjar (2011) for details. They are related to
the standard engineering parameters as
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where the subscript L refers to the fibres’ direction, and T to the
transverse plane normal to it.

The stress tensor � being given by the state law � = ∂W/∂ε, use
of the following useful results within the derivation employing the
chain rule

∂I1
∂ε

= 1,
∂I2
∂ε

= 2ε,
∂I4
∂ε

= M,
∂I5
∂ε

= Mε + εM (4)

leads to the constitutive relation given by

� = � tr[ε] 1 + ˛
{

[ε : M]1 + tr[ε]M
}

+  ̌ [ε : M] M + 2�T ε

+ 2(�L − �T )
{

Mε + εM
}

(5)

In this form, there is no need to select a coordinate system {�ei}i=1,2,3
such that one of the coordinate axes coincide with the direction of
the fibres.

3. Modeling of fibre breakage

In order to provide a tool for structural simulations, a pheno-
menological modeling at the macroscale is of interest. We  choose
for this an internal variable model within the context of the nowa-
days well-known continuum damage mechanics, see for instance
Lemaitre and Chaboche (1994). In this spirit, the residual elastic
properties of the material are reduced with growing damage. The
model adopted in this work is described in the following together
with an algorithmic setting for its numerical implementation.

3.1. A strain-based fibre breakage damage model

The elastic-damage law we choose constitutes the simplest form
where damage is coupled to elasticity. We  write

� = (1 − d) �0 (6)

where �0 is the effective undamaged stress tensor given by Eq. (5).
The newly introduced scalar d is the internal fibre damage variable
with value 0 when the fibres are undamaged and 1 when they are
completely damaged. The way this damage evolves is a matter of
modeling and, in all cases, it is necessary to specify complementary
equations.

At the local level, damage must be linked to the strain along the
fibres. This latter, being given by the strain projection �V  · ε �V , is no
more than the invariant I4 = [ε : M] defined in Eq. (1) 4. Therefore,
I4 constitutes an excellent candidate to govern this damage mode.
We choose in this work the following criterion

F(d; I4) = (1 − d)m I4 − εF ≤ 0 (7)

where εF > 0 is the strain-like initial damage threshold, and the con-
stant parameter m > 0 controls the hardening/softening response
as shown below. This criterion simply means that damage evolves
when the strain along the fibres reaches the value εF/(1 − d)m. In
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