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We study the development of the Asaro-Tiller-Grinfel'd instability on a thin strained film on top of a
stripe-patterned substrate and the subsequent growth of self-organized quantum dots. We use a continuum
model describing the evolution equation enforced by surface diffusion. We compute the elastic energy up to
the first non-linear order and investigate the long time dynamics which describes the dot growth. We find
different island locations depending on the substrate wavelength and thickness. As found in experiments,
the instability long-time dynamics leads to islands located either on top or in the bottom of the pattern.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The growth of self-organized islands on a patterned substrate was
subject to intense experimental and theoretical works due to their
link with application and the fundamental issues concerning growth
mechanisms that they address [1–3]. The underlying goal is to
achieve a given spatial order and a narrow size distribution which
are both limited on a flat substrate, see e.g. [4]. This control is clearly
important if one wants to achieve good electrical and optical proper-
ties of dots for their potential use in devices.

Of particular interest is the growth of islands on a stripe-patterned
substrate. This geometry which is the simplest onemay think of, allows
to check the control and understanding of island growth on a pattern.
However, on the experimental front, no clear scenario emerges as
regards to the preferential location of the dots, even in the paradigmatic
SiGe systems. Perfectly aligned and regularly spaced one dimensional
(1D) arrays of Ge islands appeared on the stripe mesas in [5]. In this
work, the patternwas obtained by photolithography and the separation
between stripeswas 100 nm, similar to the pattern height. This location
was also obtained in [6] on larger and sparser stripes. In a slightly differ-
ent but similar geometry, islands were also found to decorate the top of
the undulation resulting from the deposition of a Si1 − xGex template
layer on a 10° off Si(001) substrate [2]. On the other hand, islands
were shown to nucleate in [7] rather on the side of a pattern resulting
from holographic lithography and reactive-ion etching, with a period
of 500 nmand a height of 100 nm. Finally, in a different but comparable
geometry, islands were conversely found in [8] in the bottom of a
pit-patterned substrate.

In order to shed some light on the basic mechanisms at work in
these systems, we study the evolution of the Asaro-Tiller-Grinfel'd
(ATG) instability [9,10] on a pattern. This instability is known to be
at work in low-strained SiGe films on Si and corresponds to a
nucleationless evolution [11] which finally leads to islands. It must
be distinguished with the nucleation of dots in the 2D–3D transition
observed in higher strained Si1 − xGex films with a higher Ge content,
see e.g. [12]. In order to study the instability, we use a basic continu-
ummodel which accounts for elasticity, wetting interactions and sur-
face energy. It describes the evolution of the surface morphology as
dictated by mass conservation associated with surface diffusion dur-
ing annealing. We investigate the formation of islands by looking at
the long-time evolution of the instability thanks to its non-linear
analysis. We find different locations of the dots depending on the pat-
tern wavelength and mean film height. Both parameters rule the ex-
ternal force resulting from the patterned film/substrate interface,
especially its amplitude and frequency with respect to the instability
characteristic wavelength.

2. Continuum model and non-linear analysis

We use a continuum description relevant to describe the instabil-
ity dynamics on large scales. We first consider the diffusion equation
during annealing

∂h=∂t ¼ DΔsμ; ð1Þ

where z = h(r,t) is the surface height at time t of the r = (x,y) col-
umn, while D is an effective surface diffusion coefficient, Δs, the sur-
face Laplacian, and μ, the chemical potential on the surface [13].
Different effects may be accounted for by adding extra terms to the
basic chemical potential μ ¼ γκ þ Eel, where Eel is the elastic energy
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density on the surface, γ, the surface energy, and κ, the curvature
κ = − (hxx + hyy) + … at first order in the surface slope. Wetting
interactions between the film and the substrate may be accounted
for by an explicit dependence of the surface energy on the film thick-
ness [14,15]. The film/substrate interface is patterned and is defined
by z = h−(r), so that we write this dependence as

γ ¼ γ h rð Þ−h− rð Þ½ �; ð2Þ

where we use an exponentially decaying decrease in γ(h) [16]. This
dependence enforces an additional wetting potential in the chemical
potential which merely reads Ωdγ

dh; , where Ω is the atomic volume.
In addition to the wetting interactions, the patterned interface

also generates buried elastic dipoles which create an elastic field
throughout the system. It may be computed by solving the mechani-
cal equilibrium Navier-Cauchy equations ∂iσij = 0 in the film and in
the substrate. An elastic stress is generated by the coherence of
their interface and the lattice misfit between them, m = 1 − af/as,,
with the film and substrate lattice parameters αf and αs. For simplic-
ity, we consider identical elastic properties for the film and substrate.
The continuity of forces and displacements at the interface allows us
to compute explicitly the solution in the small slope approximation
where |∇h−| is supposed to be small. Finally, the film surface is also
supposed to be free of stress, which also allows us to compute the
full solution for the displacements in the second small slope approx-
imation where |∇h| is small. With this solution in hand, one can com-
pute the elastic energy density on the surface Eel ¼ E0 þ E1 þ E2 þ…

up to the first non-linear order. At zeroth order in the film and inter-
face slopes, it corresponds to the flat film elastic energy density
E0 ¼ Ym2= 1−νð Þ; , where Y is the film Young modulus and ν, its
Poisson ratio. At first order, it is given by [13]

E1

2 1þ νð ÞE0
¼ −Hii h½ � þ B Hii h−½ �f g; ð3Þ

with summation over repeated indices and with the generalized Hil-
bert transforms defined in Fourier space [17]

Hij h½ � kð Þ ¼ kikj
kj j F h½ � kð Þ; ð4Þ

where i, j are either x or y. Moreover, the elastic field created by
the buried elastic dipoles at the film/substrate interface is exponen-
tially damped in the growth direction, which is described by the
operator

B h½ � kð Þ ¼ e− −kj jhF h½ � kð Þ; ð5Þ

with the mean film height h ¼ hh i− h−h i: Finally, considering a 1D
pattern parallel to the y-direction z = h−(x), see Fig. 1, we also com-
puted the elastic energy up to the second order, which can be
decomposed in three parts E2 ¼ Eþþ

2 þ Eþ−
2 þ E−−

2 , where the first
contribution depends only on the upper surface height h contrary to

the last one which depends only on the interface h−, while the second
one is an interference term depending on both heights. The first con-
tribution which involves only the film height naturally coincides with
the second order computed for a flat film/substrate interface [18]

Eþþ
2

2E0 1þ νð Þ ¼ 2hΔhþ ∇h 2 þHij h½ �θijklHkl h½ � þ 2Hij hθijklHkl h½ �
h i

;
������ ð6Þ

where θijij = 1 for i, j = x, y, θiijj = −θijji = ν for i ≠ j while it van-
ishes otherwise. The new contributions correspond first to the exter-
nal field associated with the buried dipoles of the film/substrate
interface, which merely reads

E−−
2

2E0 1þ νð Þ ¼ −B ∂h−
∂x

����
����2 þ h−

∂2h−
∂x2

( )
þ B Hxx h−½ �½ �2; ð7Þ

while the cross term which describes the interference between the
dipoles of the film surface and the dipoles of the interface is

Eþ−
2

2E0 1þ νð Þ ¼ −hB ∂2h−
∂x2

" #
−2Hxx h½ �BHxx h−½ �−2νHyy h½ �BHxx h−½ �

−2Hxx hBHxx h−½ �f g−2νHyy hBHxx h−½ �f g:

ð8Þ

3. Evolution

The characteristic length and time scales are set by the instability
driving forces and are given by l0 ¼ γf =2 1þ νð ÞE0 and t0 = l0

4/Dγf,
where γf is the film characteristic surface energy. For a typical
Si 0.75Ge0.25 film on a Si substrate, where the misfit strain is 1%,
these are of the order of 27 nm and 25 s [18]. As regards the wetting
effect, we consider a smooth exponentially decaying surface energy
γ(h) = γf[1 + cwexp(−h/δw)], where cw is extrapolated to 0.1,
while δw is taken as one lattice parameter [18].

The dynamics associated with the evolution Eq. (1) at linear order
corresponds to the early time dynamics of the instability. In the case
of a flat substrate and without wetting interactions, a perturbation
with a wave-vector vk grows exponentially with time with the ATG
growth rate σ = |k|3 − k4 in dimensionless units defined with l0 and
t0 [9,10]. This growth rate displays a maximum for a given |k|, which al-
lows to define the instability characteristic length scale λATG. When
wetting interactions are acting, an extra −k2e−h=δw term is present
and enforces a negative σ for h b hc, below which a thin film remains
stable and does not develop themorphological instability. The evolution
at linear order with the initial condition (9) and the pattern influence
(Eq. (3)) was analyzed in Ref. [13] for a similar but slightly different
2D egg-carton shape. Kinetic phase diagramswere exhibited, which de-
scribe the surface geometry as a function of the pattern wavelength λ,
the film thicknessh and the duration t of the evolution. Threemain con-
figurationswere found. In the first two, thefilm displaysmainly the pat-
tern shape but is either in-phase (the maxima of the film lie on top of
the maxima of the substrate) or out-of-phase (the film and substrate
maxima and minima lie on top of each other). A continuous transition
from the initial in-phase to the energy-minimizing out-of-phase config-
urations was evidenced, which occurs by the vanishing of the film
roughness in order to allow the phase shift even for a positive growth
rate [13]. The last film geometry whichmay be found in the linear anal-
ysis, is associatedwith the ‘classic’ATG instability shape,well-defined in
Fourier space by a ring of maxima which correspond to the wave-
vectors which maximize the linear growth rate. In this last case, the in-
fluence of the pattern may be quantified in Fourier space, but is hardly
visible in real space.

To go beyond the initial linear evolution, we numerically solve the
non-linear evolution Eq. (1) using a pseudo-spectral method devised
to stiff non-linear partial differential equations [19]. We consider anFig. 1. 1D pattern on which the Asaro-Tiller-Grinfel'd instability develops.
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